• DNDi_Logo_No-Tagline_Full Colour
  • Our work
    • Diseases
      • Sleeping sickness
      • Visceral leishmaniasis
      • Cutaneous leishmaniasis
      • Chagas disease
      • Filaria: river blindness
      • Mycetoma
      • Paediatric HIV
      • Cryptococcal meningitis
      • Hepatitis C
      • Dengue
      • Pandemic preparedness
      • Antimicrobial resistance
    • Research & development
      • R&D portfolio & list of projects
      • Drug discovery
      • Translational research
      • Clinical trials
      • Registration & access
      • Treatments delivered
    • Advocacy
      • Open and collaborative R&D
      • Transparency of R&D costs
      • Pro-access policies and IP
      • Children’s health
      • Gender equity
      • Climate change
      • AI and new technologies
  • Networks & partners
    • Partnerships
      • Our partners
      • Partnering with us
    • Global networks
      • Chagas Platform
      • Dengue Alliance
      • HAT Platform
      • LEAP Platform
      • redeLEISH Network
    • DNDi worldwide
      • DNDi Switzerland
      • DNDi DRC
      • DNDi Eastern Africa
      • DNDi Japan
      • DNDi Latin America
      • DNDi North America
      • DNDi South Asia
      • DNDi South-East Asia
  • News & resources
    • News & stories
      • News
      • Stories
      • Statements
      • Viewpoints
      • Social media
      • eNews Newsletter
    • Press
      • Press releases
      • In the media
      • Podcasts, radio & TV
      • Media workshops
    • Resources
      • Scientific articles
      • Our publications
      • Videos
    • Events
  • About us
    • About
      • Who we are
      • How we work
      • Our strategy
      • Our donors
      • Annual reports
      • Our prizes and awards
      • Our story: 20 years of DNDi
    • Our people
      • Our leadership
      • Our governance
      • Contact us
    • Work with us
      • Working at DNDi
      • Job opportunities
      • Requests for proposal
  • Donate
  • DNDi_Logo_No-Tagline_Full Colour
  • Our work
    • Diseases
      • Sleeping sickness
      • Visceral leishmaniasis
      • Cutaneous leishmaniasis
      • Chagas disease
      • Filaria: river blindness
      • Mycetoma
      • Paediatric HIV
      • Cryptococcal meningitis
      • Hepatitis C
      • Dengue
      • Pandemic preparedness
      • Antimicrobial resistance
    • Research & development
      • R&D portfolio & list of projects
      • Drug discovery
      • Translational research
      • Clinical trials
      • Registration & access
      • Treatments delivered
    • Advocacy
      • Open and collaborative R&D
      • Transparency of R&D costs
      • Pro-access policies and IP
      • Children’s health
      • Gender equity
      • Climate change
      • AI and new technologies
  • Networks & partners
    • Partnerships
      • Our partners
      • Partnering with us
    • Global networks
      • Chagas Platform
      • Dengue Alliance
      • HAT Platform
      • LEAP Platform
      • redeLEISH Network
    • DNDi worldwide
      • DNDi Switzerland
      • DNDi DRC
      • DNDi Eastern Africa
      • DNDi Japan
      • DNDi Latin America
      • DNDi North America
      • DNDi South Asia
      • DNDi South-East Asia
  • News & resources
    • News & stories
      • News
      • Stories
      • Statements
      • Viewpoints
      • Social media
      • eNews Newsletter
    • Press
      • Press releases
      • In the media
      • Podcasts, radio & TV
      • Media workshops
    • Resources
      • Scientific articles
      • Our publications
      • Videos
    • Events
  • About us
    • About
      • Who we are
      • How we work
      • Our strategy
      • Our donors
      • Annual reports
      • Our prizes and awards
      • Our story: 20 years of DNDi
    • Our people
      • Our leadership
      • Our governance
      • Contact us
    • Work with us
      • Working at DNDi
      • Job opportunities
      • Requests for proposal
  • Donate
Home > Scientific articles
Feb 2021

Blood parasite load as an early marker to predict treatment response in visceral leishmaniasis in Eastern Africa

Clinical Infectious Diseases

by Verrest L, Kip AE, Musa A, Schoone GJ, Schallig HDFH, Mbui J, Khalil EAG, Younis BM, Olobo J, Were L, Kimutai R, Monnerat S, Cruz I, Wasunna M, Alves F, Dorlo TPC. Clinical Infectious Diseases 2021: ciab124. doi: 10.1093/cid/ciab124.

Summary: In order to expedite the development of new oral treatment regimens for visceral leishmaniasis, there is a need for early markers to evaluate treatment response and predict long-term outcomes. In this study, data from three clinical trials of antileishmanial therapies in Eastern African visceral leishmaniasis patients were analysed and clinical trial simulations were performed to investigate the use of blood parasite load as a surrogate endpoint to predict clinical outcome at six months. Leishmania parasite load in the blood determined by qPCR was found to be a promising early biomarker to predict relapse in visceral leishmaniasis patients. Once optimized, it might be useful in dose finding studies of new chemical entities.

access the article
Visceral leishmaniasis

Latest scientific articles

Loading...
Scientific articles
30 Sep 2025

New regimens of benznidazole for the treatment of chronic Chagas disease in adult participants in indeterminate form or with mild cardiac progression (NuestroBen study): protocol for a phase III randomised, multicentre non-inferiority clinical trial

BMJ Open
Scientific articles
29 Sep 2025

Performance evaluation of rapid diagnostic tests for Chagas disease in Jutiapa, Guatemala

Journal of the Brazilian Society of Tropical Medicine
Scientific articles
22 Sep 2025

Mass balance, pharmacokinetics, metabolism, and excretion of radiolabeled acoziborole, a potential novel treatment for human African trypanosomiasis, following single microtracer oral dose to humans

Antimicrobial Agents and Chemotherapy
Scientific articles
18 Sep 2025

Structure–activity relationships of fenarimol analogues with potent in vitro and in vivo activity against Madurella mycetomatis, the main causative agent of eumycetoma

RSC Medicinal Chemistry
VIEW ALL

Stay connected

Get our latest news, personal stories, research articles, and job opportunities. 

Linkedin-in Instagram Twitter Facebook-f Youtube
International non-profit developing safe, effective, and affordable treatments for the most neglected patients.

Learn more

  • Diseases
  • Neglected tropical diseases
  • R&D portfolio
  • Policy advocacy

Get in touch

  • Our offices
  • Contact us
  • Integrity Line

Support us

  • Donate
  • Subscribe to eNews

Work with us

  • Join research networks
  • Jobs
  • RFPs
  • Terms of Use   
  •   Acceptable Use Policy   
  •   Privacy Policy   
  •   Cookie Policy   
  •   Our policies   

  • Except for images, films, and trademarks which are subject to DNDi’s Terms of Use, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license