Time is inexorable and 2030 is getting closer. The WHO road map for neglected tropical diseases 2021–2030 set specific and cross-cutting targets and strategies for the control of cutaneous leishmaniasis (CL) worldwide, aiming to detect and report 85% of all CL cases and treat 95% of all those detected and reported cases in all CL-endemic countries. Three critical actions were identified: 1) developing an oral or topical treatment to be used at health centre level; 2) availability of rapid diagnostic tests (RDTs) for case detection and treatment; and 3) improving surveillance and monitoring of the impact of control interventions.

As time passes, while some progress has been made, we see with concern that the target for CL control might not be achieved by 2030 as planned.

DNDi, in collaboration with its partners, continues advancing in the development of an oral drug and is now planning a proof-of-concept study, expected to be initiated in 2024, to test a new oral chemical entity. We also expect to complete in 2024 the multiple ascending dose study of the CpG D35 immunomodulator which is now being conducted in Colombia.

Several groups, at different clinical stages, are working with different topical formulations and one more oral compound. However, considering the attrition rate of all compounds during clinical development, the time needed to conduct phase II and III studies, the funding needs, and all Chemistry, Manufacturing and Controls studies required by stringent regulatory authorities to register a new treatment, we don’t think that any of the above-mentioned treatment options will be available by 2030.

A similar phenomenon is observed in the field of diagnostic: there is lack of affordable and sensitive RDTs for the detection of CL cases at the primary healthcare level. Looking at the international scenario, it seems that a RDT for CL detection will not be available by 2030 either.

A critical and major bottleneck hindering research and development efforts of CL diagnostics and treatments remains the lack of funding. Astonishingly, despite all the evidence regarding the burden of CL on patients’ quality of life, disability, social segregation and mental health, most donors, funding agencies and other stakeholders continue to disregard CL as an important NTD. Radical changes are needed to shift this understanding and bring more funds for CL R&D. Therefore, all of us must urgently undertake every effort to raise CL awareness on every opportunity.

BYRON ARANA, DNDI
The innovation and access gap in relation to diagnosis continues to represent one of the major challenges for the control of cutaneous leishmaniasis (CL) as a public health issue. The development of rapid, high-performance, diagnostic tests that are easy to use at the primary health care level is critical to reach the targets set for CL in the World Health Organization (WHO) Roadmap for Neglected Tropical Diseases 2021-2030. Currently, the lack of adequate tools leads to diagnosis and treatment delays, increasing the suffering and the risk of morbidity for the affected people.

To guide this need for innovation, the Foundation for Innovative New Diagnostics (FIND), together with experts from endemic regions, has proposed a target product profile (TPP). This TPP was approved by the WHO Diagnostic Technical Advisory Group (WHO DTAG) for Neglected Tropical Diseases, which establishes the requirements for the development of rapid diagnostic tools for dermal leishmaniasis.

Recognizing this R&D priority, in August 2022, during their seventh meeting held at the WorldLeish 7 international congress, redeLEISH researchers launched a Manifesto aimed at the scientific community, health authorities and funders. The document draws attention to the urgent need for the technological development of user-friendly diagnostic tests for CL, guided by the criteria set forth in the TPP. Given the scarcity of resources, the Manifesto also highlights the urgent need of increasing incentives and funding for all stages of the process. According to the latest G-Finder report, in 2021 only US$200,000 were invested in research and development (R&D) for leishmaniasis diagnosis, accounting for 0.5% of the total funding for the disease (US$40 million).

Stakeholders need to jointly commit to boost the development, validation, production and implementation of new and suitable diagnostic tools for this disease. In addition, it is important to encourage initiatives that allow patients affected by CL to access early diagnosis and treatment.

To contribute to the priority actions listed in the Manifesto and as recommended at the redeLEISH meeting, a working group was created, with the participation of several of the network’s collaborators.

Since its release, the Manifesto has been shared in various digital media and in conferences, such as the Congress of the Brazilian Society of Tropical Medicine (MEDTROP 2022) and the XVIII Colombian Congress of Parasitology and Tropical Medicine.
EVALUATION OF AN IMMUNOCHROMATOGRAPHIC ANTIGEN DETECTION KIT FOR DIAGNOSIS OF ULCERED CUTANEOUS LEISHMANIASIS: A MULTICENTER STUDY IN BRAZIL

MARIA INÉS FERNANDES PIMENTEL and LILIAN MOTA CANTANHÊDE, Oswaldo Cruz Foundation (Fiocruz)

T

tegumentary leishmaniasis affected an average of 16,471 people per year in Brazil between 2017 and 2021. In about 95% of cases, it was the cutaneous form (CL)1. Differential diagnosis includes mainly pyoderma, subcutaneous and systemic mycoses, vasculopathies and skin cancer. Correct diagnosis is necessary for the timely start of a specific treatment, which is carried out with toxic medications and should preferably begin upon laboratory confirmation. Treating a different condition as CL may worsen the patient’s prognosis.

In the Brazilian public health network, the most accessible diagnostic method is directly examining the lesion scraping2. The level of complexity, which requires laboratory structure and specialized professionals, along with the high cost of histopathology, culture and molecular tests3, restricts them to reference centers. Trained healthcare professionals collect samples for direct examination by ulcer scraping when physicians are unavailable. Such procedures do not require anesthesia, especially in conditions of scarcity of other laboratory resources3. Sensitivity of direct examination with staining for Leishmania varies depending on where in the lesion the material was collected from, and the expertise of the individual reading the slide3.

The National Health Surveillance Agency (ANVISA) has recently approved a diagnostic kit, the LSH Cutânea ECO Test4, for qualitative detection by immunochromatography with specific anti-peroxidoxin antibody of antigens of Leishmania species causing cutaneous leishmaniasis, including L. (V.) braziliensis and L. (L.) amazonensis. The result is available within 20 to 30 minutes, and the kit can be stored at room temperature (2 to 30°C), which is an additional advantage. A similar rapid immunochromatographic test for Leishmania antigen detection was assessed in Suriname in an endemic area of L. (V.) guyanensis, and in Peru in an endemic area mainly of L. (V.) braziliensis. The test showed good specificity, but lower sensitivity as compared to PCR. In Afghanistan, the same test resulted in greater sensitivity5, which can be explained by different parasite loads of Leishmania species from Asia, Europe and Africa when compared to the Americas, or antigenic differences among species6.

It is important to point out that in the Leishmania species common in Brazil, especially in L. braziliensis, genotypic differences are known to be expressed in different phenotypes7. Therefore, a multicenter study will be carried out in several reference units for CL in different geographic and epidemiological contexts (Rio de Janeiro, Minas Gerais, São Paulo, Mato Grosso do Sul and Rondônia). The performance (sensitivity, specificity, positive and negative predictive values) of the LSH Cutânea ECO Test in the diagnosis of CL will be evaluated in clinical samples obtained from patients with ulcerated skin lesions and who have not yet undergone specific treatment for CL. The result will be compared with the direct parasitological examination and qPCR. Test results will be analyzed according to different collection instruments, infecting species, and parasite loads. This study will allow to evaluate a rapid diagnostic method that is simple to carry out and interpret, with potential to be used at the point of care for patients with suspected CL. This would represent a great improvement in health care.

References

Participating institutions and researchers

1. Evandro Chagas National Institute of Infectious Diseases*
   • Maria Inês F. Pimentel
   • Liliane de Fátima A. Oliveira

2. René Rachou Institute
   • Gláucia Fernandes Cota

3. Emílio Ribas Institute of Infectious Diseases
   • José Angelo Lautela Lindoso

4. Federal University of Mato Grosso do Sul
   • Mauricio Antonio Pompilio

5. Fiocruz Rondônia
   • Gabriel Eduardo M. Ferreira
   • Capitaine Ferreira S. Junior

6. Oswaldo Cruz Institute
   • Ebia Capolillo
   • Lilian Motta Cantanhêde

Reference
L

the antigenic agents responsible for the delayed hypersensitivity reaction shown by the test are still unknown and that, as it is an allergic test and is used in vivo, it requires carefully standardized and controlled production. Therefore, it is urgent to develop an IDRM test that continues to be easy to perform, with high sensitivity and low cost. It must also be more modern and safer, using purified or semi-purified antigen, just like the purified protein antigen used to diagnose tuberculosis.

The lack of IDRM tests directly impacted tegumentary and mucosal leishmaniasis diagnosis, particularly for health units. Many cases occur in remote areas which have few available options of diagnostic tests, such as parasitological culture, PCR, and histopathology. In such places, diagnosis performed by health professionals trained in IDRM testing circumvented the lack of doctors for biopsy sample collection and laboratories with infrastructure for other diagnostic techniques, enabling a quick diagnosis and better chances of successful treatment. In addition, mucosal lesions may be in an anatomical site difficult to collect from, making diagnosis difficult.

IDRM test is key in a country like Brazil, where there are many cases scattered throughout the country. The lack of human resources for healthcare in some areas and financial resources to carry out more complex diagnostic techniques worsen the disease's chronicity, making it more difficult to treat. The challenge ahead is to develop a standardized IDRM test following ANVISA regulations to strengthen tegumentary and mucosal leishmaniasis control.

WHO APP FOR CAPACITY BUILDING ON SKIN NEGLECTED TROPICAL DISEASES

The Global Neglected Tropical Diseases (NTD) Programme of the World Health Organization (WHO) has included the integrated control and management of skin NTDs as a key strategy in its roadmap 2021-2030, “Ending the neglect to attain the Sustainable Development Goals”.

Capacity building of non-specialized front-line health workers is paramount to properly identify and manage common skin conditions because, overall, skin NTDs represent less than 5% to 10% of the skin conditions usually seen by clinicians at the primary health care level.

In 2020, WHO launched a mobile application to facilitate diagnosis of skin NTDs for training purposes. The current version published in Android and iOS, available free of charge, works offline and has an algorithm that allows filtering by country to know which skin NTDs are endemic in each location. The app provides brief information on how to diagnose and treat each condition. It is available in English, French, Spanish and Portuguese.

WHO is now working on adding all skin NTDs to the AI algorithm and then plans to field test it in real clinical settings. Discussions are also ongoing with app developers to add AI for 24 common skin conditions.

It is important to emphasize that the WHO app is intended for educational purposes only and by no means should be considered a diagnostic medical device. The app provides information and classifies images for a very limited number of diseases so it is always possible that a condition not included in the app is causing the lesions observed by the clinician. The target audience of the app is primarily non-specialized health workers, and it does not replace the input of a dermatologist when deemed necessary, by either referring the patient or through teledermatology consultations.

DNDi is collaborating with WHO and sharing anonymized photographs to train the AI algorithm of the app. •

The link to download the beta version is available upon request for those willing to test it in the field. Contact us at postigoj@who.int.

Reference

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis, accounting for about 90% of the estimated 600,000 to one million cases worldwide per year (WHO, 2023). In general, skin lesions are circumscribed to the site of the bite and persist for months or years, leaving permanent scars when they heal. In the New World, lesions rarely heal on their own and can progress to the more severe mucosal and diffuse forms. The deformations that result from the disease generate social stigma, psychological issues and loss of economic status, especially in poor communities (Bennis et al. 2018). This is why CL should be treated in a timely and definitive manner.

In many countries, the treatment of CL is still based on a series of intramuscular (IM) or intravenous (IV) injections of pentavalent antimonials (SbV), pentamidine or amphotericin B (AmB), which are painful, require frequent hospital visits and cause undesirable systemic effects (Esfandiarpour et al. 2012), making its application unacceptable for pediatric or pregnant patients. Moreover, the need for frequent visits to health units represents an access barrier to patients from remote regions and of limited financial means.

To circumvent the difficulties with topical absorption and the undesirable systemic absorption, we envisioned the encapsulation of biodegradable polymeric matrices in microspheres as a viable solution for retaining the drug in the dermis. In addition to the depot effect, phagocytosis of the particles by macrophages may favor the targeting of the parasite. We chose a biocompatible and versatile copolymer, PLGA [poly(lactic-co-glycolic acid)]. It is approved by the FDA and EMA for extended-release microspheres of drugs against chronic diseases such as prostate cancer, schizophrenia, and acromegaly (Wang et al. 2016), with a release time ranging from one to six months, depending on the type of PLGA employed. When PLGA degrades, it releases lactic acid and glycolic acid, which are physiological. In our hands, neither SbV (meglumine antimoniate) nor SbIII (trivalent) showed good compatibility with the polymer (unpublished data). We then used a synthetic chalcone (CH8) which is very active against Leishmania, with hydrophobic and crystalline properties more suitable for encapsulation. We produced particles of 6 μm in diameter with 8% of CH8 in the polymer matrix (Sousa-Batista et al. 2018a). This development was supported by GKSI, and it demonstrated in infected rodents the feasibility of proposing a local, single-dose treatment. Subsequent changes in the method allowed increasing the CH8 content from 8% to 18% (Sousa-Batista et al. 2018b), with significant benefits. Even though the preclinical safety of the CH8/PLGA formulation was widely evaluated (Sousa-Batista et al. 2022), using a new drug would imply facing regulatory approval obstacles for a new therapy for leishmaniasis. With this in mind, it was decided to invest first in an already approved drug, Oral miltefosine, which was previously restricted to VL, was recently approved in Brazil for the treatment of CL, but with restrictions due to its teratogenic effect and variable efficacy. As for topical formulations developed with paromomycin or AmB, they have either shown variable efficacy depending on the species (Moradzadeh et al. 2019) or are innocuous (Lopez et al. 2018). Drug-related factors, such as large molecular size (AmB) and low lipophilicity (paromomycin), may contribute to low permeation through the lipid matrix of the stratum corneum, as well as hypertrophy of the epidermis at the borders of the ulcers, where infected macrophages are concentrated (Nylen and Eidsmo 2012).

Due to the lack of adequate topical treatments, local intraleisional (IL) treatment with SbV has started to be the first therapeutic choice for uncomplicated localized cutaneous leishmaniasis (LCL), with a maximum of three lesions up to 3 cm (PAHO, 2022). Intradermal (ID) or subcutaneous (SC) injections ensure that the drug reaches the site of infection, maximizing its concentration in the target tissue and minimizing systemic exposure. However, due to high hydrophilicity and rapid absorption into the bloodstream, volumes of no more than 5 mL of SbV should be infiltrated per lesion, with new doses applied once or twice per week for three to five weeks (PAHO, 2022). In addition to being painful, this can cause undesirable systemic effects.

To achieve a new single-dose therapy that is safe and fast-acting, we considered searching for new therapeutic alternatives for oral or topically used that are safe and fast-acting. The need for frequent visits to health units represents an access barrier to patients from remote regions and of limited financial means. In addition to already being widely used in clinical settings, AmB was chosen because of other advantages: 1) it is the most effective anti-leishmanial drug available; 2) it has low probability of resistance induction; and 3) it is broad spectrum, therefore useful in regions where several Leishmania species coexist or when accurate identification of the species is not possible. The biggest technical challenge was its amphoteric nature, which required the development of a new encapsulation process. AmB/PLGA particles, which we registered as AmphoDepot®, of different sizes (0.5 μm to 20 μm), were produced for double depot and intracellular effect. After IL application of a single 5 μg dose of AmB in recent or established lesions in mice infected with L. amazonensis, AmphoDepot® was shown to be more effective in controlling the parasite load (97%) compared to free or liposomal AmB (Ambisome®). Pharmacokinetic studies have shown that, after a single IL dose, AmB is retained in the lesion for at least 15 days without being detected in the bloodstream during this period, unlike free AmB, which reaches plasma peak in 12h and remains circulating for 24h (Sousa-Batista et al. 2019). The efficacy of AmphoDepot® has been confirmed in hamsters infected with L. braziliensis (in preparation).
AmphoDepot® was re-synthesized following GMP in a certified FUNED laboratory in Brazil, and sterilized with ionizing radiation, maintaining its physical and chemical properties, to be used in a clinical trial with patients with LCL, in the state of Minas Gerais, Brazil (protocol being adjusted). Initially, the patient will receive a single dose of AmphoDepot® containing 0.8 mg of AmB in 0.8 mL divided into four peripheral sites in the test cohort. In case of non-remission after one month of follow-up, the patient should receive a second dose, with the final end point at three months after dose one. The control cohort will receive IL SbV.

It is worth noting that the total volume of AmpoDepot, of 0.8 mL/lesion, will be six times smaller than the 5 mL of SbV, which is expected to increase patient adherence. The maximum anticipated dose of SC AmphoDepot for four lesions will be only 45 μg/Kg (70 Kg), which is considerably lower than the daily dose of IV AmB (oxycholate) (70,000 μg/Kg) or IV liposomal AmB (210,000 μg/Kg). It is also worth mentioning that AmphoDepot®’s lyophilic powder is stable at room temperature, which is an advantage for transport, storage and use in tropical regions with limited resources. Finally, since the TG of PLGA is 42°C, it is expected that, in case of low therapeutic response, the combination of AmphoDepot® with thermotherapy at a more tolerable temperature (e.g., 45°C), instead of the conventional 50°C/30°, may accelerate the local release of AmB, promoting faster and safer healing. The AmphoDepot-thermotherapy therapeutic combination is underway in preclinical studies.

The hope is that this new therapy for LCL can bring more comfort and safety to patients and reduce hospital treatment costs.

**References**


DMK 2023, https://doi.org/10.1128/AAC.02009-17


**MSF’S RANDOMISED CLINICAL TRIAL FOR NEW TREATMENT MODALITIES FOR CUTANEOUS LEISHMANIASIS CAUSED BY LEISHMANIA TROPICA IN PAKISTAN**

Cutaneous leishmaniasis (CL) is highly endemic in Pakistan and causes a large public health burden, with an estimated 50-100,000 new cases annually. The most affected provinces are Balochistan and Khyber Paktunkhwa, in western and north-western Pakistan, where Leishmania tropica is the predominant species. Since 2008, Médicins Sans Frontières (MSF) has supported the Ministry of Health with specialised CL clinics providing free diagnosis and treatment services in Qetta (Balochistan), and Peshawar (Khyber Paktunkhwa), where MSF has treated a total of 40,000 CL patients to date.

For decades, the mainstay treatment for CL is with antimicrobial injections (meglumine antimoniate or sodium stibogluconate). The treatment consists of a 3–4-week course of painful intralavial or systemic intramuscular injec-tions, the latter potentially resulting in serious toxicity. However, treatment is rarely available in public health hospitals in Pakistan. Because CL is a non-fatal dermal disease, it is not perceived as a public health priority, despite the high incidence of the disease and the large psychosocial impact it has on CL patients and their families.

Until now, there is no established evidence-based option to treat CL caused by the L. tropica, besides antimonial injec-tions. Alternative treatment options are not available in Pakistan. Evidence for the effectiveness of thermotherapy (ThermoMed®) in L. tropica is scarce and highly variable, but it could be an attractive option because only one treat-ment session is required. Another promising treatment option is oral miltefosine. There is considerable evidence in the literature of the efficacy of miltefosine in the treatment of CL caused by L. major, but no studies have been conducted to evaluate its efficacy in L. tropica infections. This oral treatment could benefit CL patients as it can be provid-ed in peripheral health facilities and to patients who have contraindications to systemic antimony treatment (elderly people, and patients with cardiac or renal disease, or diabetes). A combination of thermotherapy and miltefosine may have the advantage of increased efficacy with treatments with different modes of action, as well as a reduced length of treatment with miltefosine.

For these reasons, in a randomised clinical trial we aim to evaluate whether miltefosine monotherapy (28 days), thermotherapy (single session), and the combination of miltefosine (21 days) and thermotherapy are effective, safe and tolerable alternative treatment options for cutaneous leishmaniasis, and non-inferior to the standard of care treatment with intralavial meglumine antimoniate injections. The aim is to achieve a sample size of 208 patients per arm (832 total).

In October of 2022, patient recruitment started in two MSF clinics in Quetta, and in early 2023 a third study site is planned to start in the MSF clinic in Peshawar. A futility analysis per arm is planned once at least 120 patients (30 per study arm) complete their nominal D91 follow-up visit.

After the study we hope to have an ef-fective and safe alternative first-line treat-ment for patients with cutaneous leishmaniasis caused by L. tropica which can be provided at primary health care level.

KOERT RUTMEYER, Médecins Sans Frontières (MSF)
PAHO’S STRATEGIC FUND: IMPROVING ACCESS TO AND AVAILABILITY OF LEISHMANIASIS MEDICATIONS

The Pan American Health Organization (PAHO) continues to support countries where leishmaniasis are endemic by strengthening actions to achieve the goals of control and elimination of leishmaniasis as a public health issue, in accordance with the mandate given by the PAHO initiative for the elimination of diseases and the World Health Organization (WHO) roadmap for neglected tropical diseases (2021-2035).1

To achieve the objective of controlling cutaneous leishmaniasis and eliminating visceral leishmaniasis as a public health issue, actions such as access to early diagnosis, adequate treatment of cases and reducing contact between people and vectors have been promoted to reduce morbidity and mortality of leishmaniasis. In line with the integrated sustainable framework of PAHO’s Disease Elimination Initiative, PAHO’s Strategic Fund is mandated to support countries in improving access to and availability of safe, effective, high-quality, and affordable antileishmanial drugs.

Since 2004, the Strategic Fund has included in its Medicine List antileishmanial drugs such as meglumine antimoniate 300 mg/ml, liposomal amphotericin B 50 mg, miltefosine 10 mg and 50 mg, and pentamidine isethionate 300 mg. These drugs make up the recommended therapeutic arsenal for systemic treatments of the leishmaniasis. They are difficult to acquire for most countries in the region because they are not available in regional pharmaceutical markets and do not have registration, so the Strategic Fund is one of the ways to make them available through established agreements and exceptions issued by member countries to import these products of high value for health care.

In the last five years, the Strategic Fund has procured antileishmanial drugs at affordable prices for 15 countries in the Region of the Americas, especially those that have been negotiated within the framework of the WHO Advisory Committee on Procurement (see Fig. 1).

For antimonial drugs, a price of USD 1.53 per vial has been provided, and for liposomal amphotericin B, USD 16.25 per vial, representing an approximate cost per treatment of USD 92 and USD 1,000, respectively. In this five-year period (2018-2022) the SF has acquired more than 75,000 treatments (see Table 1) among six different products (see Table 2).

Reference


TABLE 1 - Number of treatments (see footnote) acquired through the SF by country and medication

<table>
<thead>
<tr>
<th>Country</th>
<th>Liposomal amphotericin B 50 mg</th>
<th>Meglumine antimoniate 300 mg/ml</th>
<th>Miltefosine 10 mg</th>
<th>Miltefosine 50 mg</th>
<th>Pentamidine isethionate 300 mg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombia</td>
<td>44</td>
<td>34,313</td>
<td>969</td>
<td>298</td>
<td>795</td>
<td>36,419</td>
</tr>
<tr>
<td>Brazil</td>
<td>5,663</td>
<td>-</td>
<td>3,356</td>
<td>2,225</td>
<td>11,244</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>167</td>
<td>9,332</td>
<td>190</td>
<td>77</td>
<td>9,766</td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>51</td>
<td>7,725</td>
<td>26</td>
<td>25</td>
<td>7,826</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>-</td>
<td>4,139</td>
<td>-</td>
<td>-</td>
<td>4,139</td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>-</td>
<td>3,784</td>
<td>-</td>
<td>233</td>
<td>4,017</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>-</td>
<td>1,333</td>
<td>-</td>
<td>-</td>
<td>1,333</td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>-</td>
<td>-</td>
<td>286</td>
<td>191</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>-</td>
<td>358</td>
<td>-</td>
<td>21</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>-</td>
<td>-</td>
<td>313</td>
<td>-</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td>-</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>81</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>-</td>
<td>-</td>
<td>71</td>
<td>-</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Paraguay</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6,079</td>
<td>61,067</td>
<td>1,471</td>
<td>4,585</td>
<td>3,020</td>
<td>76,206</td>
</tr>
</tbody>
</table>

1. Standard liposomal amphotericin B treatment: 63 vials
2. Standard meglumine antimoniate treatment: 60 ampoules
3. Standard miltefosine treatment: 164 tablets
4. Standard pentamidine treatment: 10 vials

Figure 1: Antileishmanial drugs acquired in the last five years by the Strategic Fund.
TABLE 2 - Reference prices for antileishmanial drugs through the PAHO Strategic Fund

<table>
<thead>
<tr>
<th>Drug description</th>
<th>Unit of measurement</th>
<th>FOB/FOB Price (USD)</th>
<th>Treatment cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meglumine antimonate 300 mg/ml</td>
<td>Ampoule</td>
<td>1.53 USD</td>
<td>92 USD</td>
</tr>
<tr>
<td>Liposomal amphotericin B 50 mg</td>
<td>Val</td>
<td>16.25 USD</td>
<td>1000 USD</td>
</tr>
<tr>
<td>Amphotericin B deoxycholate 50 mg</td>
<td>Val</td>
<td>4.82 USD</td>
<td>200 USD</td>
</tr>
<tr>
<td>Miltefosine 50 mg</td>
<td>Box of 56 tablets</td>
<td>110 USD</td>
<td>165 USD</td>
</tr>
<tr>
<td>Miltefosine 10 mg</td>
<td>Box of 56 tablets</td>
<td>150 USD</td>
<td>224 USD</td>
</tr>
<tr>
<td>Pentamidine isethionate 300 mg</td>
<td>Val</td>
<td>13.8 USD</td>
<td>138 USD</td>
</tr>
</tbody>
</table>

One of the most significant challenges in acquiring these products is that some continue to be manufactured solely by innovative laboratories. The lack of multi-source generic drugs is a major access barrier, as it severely hinders negotiation for lower prices. Along these lines, the Strategic Fund has worked with endemic countries to consolidate the demand, promoting joint purchases in order to reach affordable prices through economies of scale. In the last year, 10 countries in the region submitted their estimates to consolidate demand and help the manufacturing laboratories plan their production and distribution. A more visible demand in turn helps to mitigate the risks due to production problems, guaranteeing supply and ensuring the production and transport capacity.

The Strategic Fund has provided technical cooperation to plan and consolidate demand to meet needs, develop drug procurement management, and build strategic alliances with other partners and procurement agencies to enable global demand and avoid shortages. This helped to improve access to these medicines, promote quality and efficient procurement, and increase coverage of the affected population. Likewise, the thermotherapy equipment recommended for local treatment of localized cutaneous leishmaniasis has been included in the Strategic Fund List according to predefined criteria.

In 2022, the Regional Leishmaniasis Unit and the PAHO Strategic Fund invited the Ministries of Health of five endemic countries for leishmaniasis in the Region of the Americas (Bolivia, Brazil, Colombia, Guatemala and Nicaragua) to a forum to share methodologies and scenarios used for demand planning for antileishmanial drugs and diagnostics. These countries are part of different sub-regions and account for 94% of the cases of visceral leishmaniasis and 65% of the cases of cutaneous and mucosal leishmaniasis. As conclusions of this meeting, challenges and opportunities in the estimation of needs and procurement have been identified, and the development of a common, validated and precise methodology, applicable to the entire region, has been considered.

Additionally, PAHO has supported the region with donations of medications from the CDE regional warehouse in Panama to meet the supply of small volumes. In the last two years, 18 shipments of medications have been distributed from the warehouse to seven leishmaniasis-endemic countries, representing around 230 standard treatments. This is an interprogrammatic effort to address emergencies in the region by maintaining a strategic stock to avoid shortages.

The Strategic Fund will continue to help strengthen actions to achieve the goals of controlling and subsequently eliminating leishmaniasis, working with the countries in the region to improve access to drugs and diagnostic supplies, negotiating better prices, searching for generic alternatives, strengthening capacities for the quantification of needs and joint purchasing, and improving supply chain management to ensure the timely availability of medications in health care services.

Reference
Join the new redeLEISH webforum!

In December 2022, we migrated to a new system, more modern and user-friendly

Access the online platform together with experts from all over Latin America to receive and share information on leishmaniasis research

The forum works as a social network in which you can also receive updates through your email. Members can interact and post news, facilitating communication among collaborators. We encourage the sharing of documents and scientific papers, the promotion of events and debate, and the possibility of asking questions and making new contacts.

Register using the link or the QR code

tinyurl.com/3sncc9z9

ACKNOWLEDGMENTS

Editorial Board:
Byron Arana, Joelle Rode and Marina Certo

Translation:
Carolina Alfaro and Scriba Traduções

Photos:
Sydelle Willow Smith-DNDi and Vinicius Berger-DNDi

Coordination:
Joelle Rode

Copyediting:
Camilla Muniz, Carolina Alfaro, Joelle Rode, and Marina Certo

Design:
Alerta design

Production:
Camilla Muniz and Marina Certo