As the old saying goes, “Nothing lasts forever”, and as we enter the second half of 2022 we are seeing that many of the restrictions imposed by the COVID-19 pandemic are beginning to be lifted. Some things will never be the same, but what we have learned during the last two years will surely help us to face the new challenges of the future.

The CL program at DNDi has continued advancing, and during the last twelve months several milestones have been achieved. The CpG-D35 single ascending dose study, carried out in healthy volunteers in the UK, was completed in November of 2021. Based on the preliminary results indicating that CPG-D35 is safe and elicits the expected immunological effects, we are now preparing the multiple ascending dose study, which is planned to start by Q4-2022.

To further leverage DNDi’s rich and diverse NCE portfolio for leishmaniasis, a three-year project was initiated in late 2021 aiming to better understand the pharmacokinetics and pharmacodynamics in skin of the most advanced oral NCEs identified for VL. This will help generate preclinical knowledge with high translational value and will increase the probability of a successful advancement of such candidates into clinical trials for CL.

We continue advocating for the replacement of systemic antimonials for the treatment of uncomplicated CL cases; so, besides continuing with the Phase III study to assess the combination of thermotherapy and miltefosine in Panama, Peru, Brazil and Bolivia, we are also supporting our partners’ initiatives to expand the use of local interventions for uncomplicated CL.

Finally, yet importantly, I believe all “Leishmaniaces” are thrilled with the opportunity to get together in Cartagena de Indias, Colombia, to attend the long awaited WL7. Hope to see you all there.

BYRON ARANA, DNDi
Promoting collaborative research has been an important aspect of the network since its creation. In 2014, the first collaborative research project was launched, aiming to identify the diversity of Leishmania species in clinical samples of CL patients in four CL reference centers in Brazil. But the main redeLEISH achievement over the years was the successful conduction and completion of a data sharing project aiming to describe the effectiveness and tolerability of routine anti-leishmanial treatments in children ≤ 10 years of age and adults ≥ 60 years of age. This collaborative project, described in the previous edition of InfoLEISH, involved a consortium of eleven redeLEISH institutions from Brazil, Colombia, Bolivia, and Peru, and was proposed by investigators during one of the network’s annual meetings. This fruitful cooperation paves the way for the implementation of further collaborative projects within redeLEISH for diagnosis and treatment of CL patients, according to identified priorities.

The network has also contributed to the effort to standardize criteria for conducting clinical trials in CL, in collaboration with TDR/WHO, that are now widely endorsed and applied by redeLEISH investigators. In 2021, based on the results of a literature review, experts and investigators from the New World and the Old World reached a consensus recommending the end of patient follow-up in clinical trials assessing treatment efficacy in CL within a range of 90-120 days from treatment start. This recommendation will result in more efficient clinical trials that will benefit patients, drug developers and policy makers. redeLEISH will continue its efforts to expand the adoption of standardized methodologies for conducting clinical trials on CL, an essential requirement for the incorporation of therapeutic innovations and to guide evidence-based treatment recommendations.

In the coming years, the aim is to maintain and increase the engagement of investigators and collaborators in Latin America and attract researchers from the Old World. One of the challenges will be adapting the network’s communication tools, particularly the virtual web forum, to increase member participation and make discussions more dynamic and relevant. In-person annual meetings have also been impacted by the COVID-19 pandemic, the last one being held in 2019. Though ad-hoc virtual meetings have been held and will continue to occur, face-to-face encounters need to be maintained, since key redeLEISH initiatives emerged from these meetings.

In conclusion, thanks to the participation of all its members, redeLEISH has now reached a stage of maturity, increasingly establishing itself as a driving force to encourage collaborative projects and implement clinical trials for leishmaniasis which comply with international standards of quality and ethics in research. The network will be essential for the development of the new chemical entities arriving at the clinical phase and for any research group which is developing new treatments for CL/ML. It will enable new therapeutic options to be made available to the patients in a coordinated way, maximizing competencies and the few resources available for this neglected disease.

References

2 OLLARI, P. et al. Harmonized clinical trial methodologies for localized cutaneous leishmaniasis and potential for extensive network with capacities for clinical evaluation. PLOS Neglected Tropical Diseases. 2018

Research networks incorporating different actors, including medical and scientific experts, public and private research/academic institutions, government representatives, and international organizations are part of a worldwide trend to increase regional and international collaborations and bolster coordinated research. redeLEISH is part of this landscape and one of DNDi’s activities aiming to reinforce existing clinical research capacities in endemic countries and develop new treatments adapted to the needs of neglected patients. The involvement of experts and institutions from endemic countries guarantees that priorities in research are centered on patient’s needs, contributing to a major public health impact.

The scope of redeLEISH is to support the implementation of clinical trials for the evaluation of new therapeutic tools for leishmaniasis, promote exchange of technical and scientific information, support the implementation of collaborative research projects, facilitate consensus on research priorities and the harmonization of clinical trial design, and encourage debates on research and development challenges in leishmaniasis and strategies to ensure the public health impact of the new treatment options developed.

Coordinated by DNDi, redeLEISH’s activities are guided by a technical committee composed by representatives from partner institutions in Latin America, with the PAHO/WHO regional advisor for leishmaniasis as permanent member. This committee provides scientific advice and recommendations regarding regional needs and priorities. The main tools for communication and interaction among redeLEISH members are the virtual web forum, the annual newsletter and the periodic meetings.

Since its creation in 2014, redeLEISH has expanded and now constitutes an effective network of cutaneous leishmaniasis (CL) specialists and research centers, having established itself as a force for the implementation of clinical trials and collaborative projects in the region. It has played an important role in the conduction of the phase II and phase III trials to assess the efficacy and safety of the combination of thermotherapy and miltefosine for uncomplicated CL, as well as in the clinical trial to evaluate the efficacy and safety of miltefionine and liposomal amphotericin B for the treatment of mucosal leishmaniasis (ML). The latter is a collaborative project involving five redeLEISH institutions which emerged as a repercussion of the identification of ML as a research priority and the launching, as a research priority and the launching, during the fourth redeLEISH meeting at WorldLeish Congress, of the Manifesto to letter supporting research in ML, endorsed by redeLEISH members and the Brazilian Society of Tropical Medicine.

Promoting collaborative research has been an important aspect of the network since its creation. In 2014, the first collaborative research project was launched, aiming to identify the diversity of Leishmania species in clinical samples of CL patients in four CL reference centers in Brazil. But the main redeLEISH achievement over the years was the successful conduction and completion of a data sharing project aiming to describe the effectiveness and tolerability of routine anti-leishmanial treatments in children ≤ 10 years of age and adults ≥ 60 years of age. This collaborative project, described in the previous edition of InfoLEISH, involved a consortium of eleven redeLEISH institutions from Brazil, Colombia, Bolivia, and Peru, and was proposed by investigators during one of the network’s annual meetings. This fruitful cooperation paves the way for the implementation of further collaborative projects within redeLEISH for diagnosis and treatment of CL patients, according to identified priorities.

The network has also contributed to the effort to standardize criteria for conducting clinical trials in CL, in collaboration with TDR/WHO, that are now widely endorsed and applied by redeLEISH investigators. In 2021, based on the results of a literature review, experts and investigators from the New World and the Old World reached a consensus recommending the end of patient follow-up in clinical trials assessing treatment efficacy in CL within a range of 90-120 days from treatment start. This recommendation will result in more efficient clinical trials that will benefit patients, drug developers and policy makers. redeLEISH will continue its efforts to expand the adoption of standardized methodologies for conducting clinical trials on CL, an essential requirement for the incorporation of therapeutic innovations and to guide evidence-based treatment recommendations.

In the coming years, the aim is to maintain and increase the engagement of investigators and collaborators in Latin America and attract researchers from the Old World. One of the challenges will be adapting the network’s communication tools, particularly the virtual web forum, to increase member participation and make discussions more dynamic and relevant. In-person annual meetings have also been impacted by the COVID-19 pandemic, the last one being held in 2019. Though ad-hoc virtual meetings have been held and will continue to occur, face-to-face encounters need to be maintained, since key redeLEISH initiatives emerged from these meetings.

In conclusion, thanks to the participation of all its members, redeLEISH has now reached a stage of maturity, increasingly establishing itself as a driving force to encourage collaborative projects and implement clinical trials for leishmaniasis which comply with international standards of quality and ethics in research. The network will be essential for the development of the new chemical entities arriving at the clinical phase and for any research group which is developing new treatments for CL/ML. It will enable new therapeutic options to be made available to the patients in a coordinated way, maximizing competencies and the few resources available for this neglected disease.
Leishmaniasis is a neglected disease that mostly affects the poorest people with less access to health care services. In the Americas, they are caused by several species of Leishmania, which influence the occurrence of various clinical manifestations ranging from benign and self-contained to more severe forms, and impact the response to treatment. Around 45,000 new cases of cutaneous and mucosal leishmaniasis (CL and ML) and 3,000 cases of visceral leishmaniasis (VL) are reported each year, distributed in 18 and 13 endemic countries, respectively. In 2022, an update to the guideline for the treatment of leishmaniasis in the Americas was published based on the evidence available in the region, with the aim of providing recommendations for the treatment of leishmaniasis in its different clinical forms.

The methodology used to develop this guideline is based on the WHO Handbook, ensuring the transparency of the link between the evidence base and the recommendations. The process covered from planning to implementation and dissemination, including questions formulated according to the PICO model (population, intervention, comparison, outcome), systematic review, and the formulation of recommendations based on the grading of recommendation assessment, development and evaluation (GRADE methodology). Moreover, it considers the balance between the certainty of the evidence, the risk-benefit ratio, values and preferences, resource implications, the feasibility of implementing the intervention, the impact on equity, and stakeholder acceptability. When no studies were found to support the recommendations, we updated the best practices from the previous guideline and supplemented them with discussions in the group of participating experts supported by the safety profile of the drugs, studies in other populations and clinical experience managing patients with leishmaniasis.

The recommendations are shown in Tables 1 and 2 according to the clinical form of leishmaniasis, stratified according to the grading of evidence and strength of the recommendation. The main advances are for the cutaneous form of the disease, because the updated recommendations are presented according to the age group of the patients and the Leishmania species presumably involved. However, the identification of the Leishmania species is not imperative to start the treatment. Once the most prevalent species in the endemic area is known, treatment should be initiated according to the clinical status, availability of the drug and the risk-benefit ratio. Other advances for CL include the indication of strong recommendations for the use of local treatments in specific groups of patients with localized CL, as well as the expansion of the use of oral therapies for CL caused by L. mexicana and L. braziliensis. For VL, the recommendation of liposomal amphotericin B was updated to strong, and the group of experts issued a strong recommendation against the use of miltefosine for patients with VL and the use of pentavalent antimonials for patients co-infected with LV–HIV.

References

TABLE 1 - Recommendations for the treatment of cutaneous, mucosal or mucocutaneous leishmaniasis in the Americas, according to recommendation strength and evidence.

<p>| TABLE 1 - Recommendations for the treatment of cutaneous, mucosal or mucocutaneous leishmaniasis in the Americas, according to recommendation strength and evidence. |</p>
<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Recommendation Strength and Evidence</th>
<th>Recommendations</th>
<th>Recommendation Strength and Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>The use of intralabial pentavalent antimonials is recommended for patients with localized cutaneous leishmaniasis caused by L. mexicana and L. amazonensis.</td>
<td>Conditional recommendation, very low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of miltefosine is recommended for adult patients diagnosed with cutaneous leishmaniasis caused by L. panamensis, L. mexicana, L. guyanensis and L. amazonensis.</td>
<td>Conditional recommendation, very low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of pentamidine i.eutate is suggested for patients diagnosed with cutaneous leishmaniasis caused by L. panamensis.</td>
<td>Conditional recommendation, low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of thermotherapy is suggested for patients with localized cutaneous leishmaniasis caused by L. braziliensis, L. panamensis and L. mexicana.</td>
<td>Conditional recommendation, very low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of paromomycin is suggested for patients with cutaneous leishmaniasis caused by L. panamensis, L. braziliensis and L. mexicana.</td>
<td>Conditional recommendation, moderate to low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of pentavalent antimonials is suggested for patients with cutaneous leishmaniasis caused by L. braziliensis and L. amazonensis.</td>
<td>Conditional recommendation, low certainty evidence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2 - Recommendations for the treatment of visceral leishmaniasis in the Americas, according to recommendation strength and evidence.

<p>| TABLE 2 - Recommendations for the treatment of visceral leishmaniasis in the Americas, according to recommendation strength and evidence. |</p>
<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Recommendation Strength and Evidence</th>
<th>Recommendations</th>
<th>Recommendation Strength and Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>The use of oral pentoxifylline is not recommended for adult patients with visceral leishmaniasis.</td>
<td>Conditional recommendation, low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of oral pentoxifylline is not recommended for patients with visceral leishmaniasis.</td>
<td>Conditional recommendation, very low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of liposomal amphotericin B is recommended for immunocompetent pediatric and adult patients with visceral leishmaniasis.</td>
<td>Strong recommendation, very low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of liposomal amphotericin B is recommended for immunocompetent pediatric and adult patients with visceral leishmaniasis.</td>
<td>Strong recommendation, low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of liposomal amphotericin B is recommended for immunocompetent pediatric and adult patients with visceral leishmaniasis.</td>
<td>Strong recommendation, low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of liposomal amphotericin B is recommended for immunocompetent pediatric and adult patients with visceral leishmaniasis.</td>
<td>Strong recommendation, very low certainty evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The use of liposomal amphotericin B is recommended for immunocompetent pediatric and adult patients with visceral leishmaniasis.</td>
<td>Strong recommendation, very low certainty evidence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Ministries of Health, through their respective technical areas and with the support of local experts, should evaluate the recommendations in the national context and determine the possibility of incorporating, guaranteeing and expanding patient access to treatment using safer and shorter-term therapeutic alternatives. Thus, it is important to consider the cultural aspects related to the acceptance of new therapeutic modalities, their availability in the region, costs and operating conditions to ensure efficient distribution and use.

In addition, as a strategy to disseminate these recommendations and to strengthen the specific knowledge of health professionals, the Pan American Health Organization (PAHO) will be presenting a new version of the free Online Training Course on Leishmaniasis in the Americas: Diagnosis and Treatment – CL/ML and VL, at the Virtual Campus for Public Health.

Currently, PAHO’s Strategic Fund (SF) incorporates all the drugs recommended for the treatment of leishmaniasis in the Americas, with the exception of paromomycin cream, which is not commercially available. To acquire the drugs, the SF carries out an annual planning with the countries, confirms engagement and consolidates the quantities needed to meet the national demands, which reduces the costs and guarantees the availability to meet regional needs. In the last two years, WHO has been coordinating global discussions to secure subsidized prices and sufficient quantities from suppliers to serve endemic countries.

Despite the progress made by several countries in the adoption and availability of more than one option of medication, there is still much to be done to make other alternatives available and decentralized. There are also many challenges in the implementation of these recommendations, since national and subnational managers lack the financial resources needed for the acquisition and sustainability of the materials required for diagnosis and treatment. Other challenges include lack of production capacity or long production time, as well as delays in the distribution of medications, since most suppliers are exclusive.

The use of intraläsional antimoniars (IL-AM) and thermotherapy (TT) for the treatment of cutaneous leishmaniasis (CL) are options that have been thoroughly explored, recommended by WHO, and indicated regionally by PAHO since 2013 as therapeutic alternatives in special situations. The new guideline for leishmaniasis in the Americas, published by PAHO/WHO in 2022, consolidates and expands the use of local interventions, bringing a strong recommendation for the treatment with IL-AM and conditional recommendation for TT for patients with localized CL with a maximum of three lesions of no more than 3 cm in diameter.

With efficacy similar to systemic antimoniars, local therapies have advantages such as a better safety profile and easier use at the primary health care level, and in remote areas. In addition, they have shown to be cost effective. Some countries have included local treatments in their therapeutic guidelines, are revising the guidelines to include them, or have begun to use them in routine health care.

In this context, PAHO, in collaboration with the Ministries/Secretariats of Health of the respective countries, DNDi, and Fiocruz-IOC, has proposed a prospective cohort study to assess the clinical response and tolerability of treatment with TT or IL-AM in Mexico, Panama and Costa Rica.

The study will be conducted in some CL health care facilities in these countries, as identified by the respective Ministries of Health. Patients aged >12 years who meet the eligibility criteria defined in the protocol and have signed an informed consent will be included during a 12 month period.

Participants will be offered treatment with IL-AM (five applications with an average interval of five days) or TT (a single session) according to the protocol of each health care site, the local availability of the interventions, and the most favorable conditions for the participants. Follow-up will be conducted up to six months after the start of treatment, in accordance with the monitoring routine of each site. Clinical response will be evaluated three months after the start of treatment based on the percentage of re-epithelialization/flattening of the lesions, according to the methodology described in Olbão et al., 2013.

The Laboratório de Pesquisas em Leishmanioses of the Oswaldo Cruz Institute will also identify the species of Leishmania, quantify the parasite load in the lesions before treatment and during the follow-up period (three and six months) if lesions continue active, and detect the Leishmania RNA Virus by PCR.

We expect, with this project, to contribute to a better management of patients affected by CL, expanding the adoption of local therapies for uncomplicated CL in the routine of health care services and helping reduce the morbimortality of this disease and the associated public-health costs in the respective countries.

PROSPECTIVE STUDY OF LOCAL INTERVENTIONS FOR THE TREATMENT OF UNCOMPLICATED CUTANEOUS LEISHMANIASIS

ANA NILCE SILVEIRA MAIA-ELKHOURI, SAMANTHA YURI OSHIRO VALADAS-ROCHA, Communicable Diseases and Environmental Determinants of Health (CDE-VT), Pan American Health Organization (PAHO/WHO), Brazil
JOELLE RODE, DNDi
ELISA CUPOLILLO, LILIAN MOTTA CANTANHEDE, Laboratório de Pesquisas em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

While L. tropica and L. major predominantly cause cutaneous leishmaniasis (CL) in the Old World, a unique species is found in Ethiopia, L. aethiopica. The CL burden in Ethiopia is estimated at 20,000 to 40,000 new cases per year, disproportionately affecting children, adolescents and young adults. Over 30 million of Ethiopians live at risk for CL. The clinical manifestations of CL due to L. aethiopica are peculiarly pleitropic; the localized form (LCL) is the most frequent manifestation, occurring in over 85% of cases, mostly presenting as single lesion on the face. Other forms include disseminated cutaneous and mucosal forms. LCL in Ethiopia has a huge psychological and economic burden to the affected community, due to the predominant manifestation on aesthetically significant body parts in economically and socially active segments of the society and/or school-age children.

Local options including cryotherapy, intralesional injection of sodium stibogluconate (IL-SSG) and thermotherapy (TT) are recommended by the World Health Organization and have been widely used for the treatment of uncomplicated CL. In Ethiopia, IL-SSG administered weekly for up to six weeks is the standard treatment. Cryotherapy and TT are also included in the Ethiopian national guideline. However, there is no robust evidence to support the recommendation of the proposed local interventions for L. aethiopica. Given the lack of local evidence, principally on the use of TT, the Armauer Hansen Research Institute (AHRI), in partnership with DNDi and the Institute de Salud Carlos III (ISCIII), from Madrid, Spain, in coordination with the Ethiopian Ministry of Health’s National Leishmaniasis Control Program, will conduct an integrated phase II/III, open label, multicenter, randomized clinical trial to determine the safety and efficacy of using TT in comparison to IL-SSG in uncomplicated LCL cases in four selected centers in Ethiopia. This study is part of the ECTP RIA2020S funding “African Leishmaniasis: from Clinical Research to Access (LeishAccess Consortium; RIA2020S-3301)”.

A total of 326 male and female participants aged ≥18 and ≤60 years old who meet the eligibility criteria defined in the protocol and from whom an informed consent form has been obtained will be enrolled in the trial. Participants will be randomized to receive:

- IL-SSG: 4 weekly IL injections at Days 1, 7, 14 and 21. Subjects who present less than 50% re-epithelialization of the lesion(s) at day 28 will receive two additional weekly IL-SSG injections.
- Thermotherapy: one session, 50°C for 30-second applications. Initial cure (at Day 90), late respondents (Day 105) and final cure (at Day 180) will be assessed based on the percentage of re-epithelialization of the ulcer(s) for ulcerated lesions or flattening and/or no signs of induration of the lesion(s) for non-ulcerated lesions as compared to Day 1.

As secondary objectives, this study will also conduct a molecular characterization and phylogenetic analysis in Leishmania isolates, which will be performed by IS-CII, as well as evaluate quality of life and CL scar based, respectively, on the Dermatology Life Quality Index questionnaire and the Vancouver Scar Scale, coupled with the Patient and Observer Scar Assessment Scale. The ultimate goal is to provide evidence to the MoH about the safety and efficacy of TT for the treatment of CL due to L. aethiopica and, if results are positive, to promote its adoption on a routine basis.

The study has already been approved by AHRI, ISCIII and National Ethics Review Committees, and recruitment is expected to begin by Q4 2022.

References
CURRENT OVERVIEW AND PERSPECTIVES IN THE DEVELOPMENT OF DIAGNOSTIC TESTS FOR CUTANEOUS LEISHMANIASIS

GLÁUCIA COTA, DANIEL AVELAR AND MARIANA FREIRE, Instituto René Rachou – Fiocruz Minas, Brazil

Laboratory diagnosis is still one of the major challenges for the control of cutaneous and mucocutaneous leishmaniasis, diseases that are still present in tropical countries on many continents, with a broad range of clinical manifestations and potentially toxic treatment. Parasitological methods based on the direct observation of the amastigotes or the culture of promastigotes, although highly specific, have limited sensitivity. On the other hand, traditional molecular methods are highly accurate, but also complex and costly, characterizing preliminary results (Freire et al., 2019). In addition, the Foundation for Innovative New Diagnostics (FIND) has recently proposed, based on expert opinion, a product target profile for a point-of-care diagnostic test for cutaneous leishmaniasis, that should present a minimum of 95% specificity and 90% sensitivity (Crax et al., 2019). The search for a test that fulfills the minimum requirements may leverage significant changes in the current approaches to the disease, but will also require substantial investment, both material and human, for the identification and validation of new diagnostic tools. Given the current evidence, methods based on the isothermal amplification of DNA or other rapid immunological methods associated with minimally invasive sample collection approaches have become the most promising strategies in the quest for the ideal diagnostic. Collecting clinical samples in a minimally invasive way, whether using owh, cytology brush or paper filter, has become a viable alternative to lesion biopsy. In fact, there is evidence that the Leishmania concentration may be higher when obtained through these techniques, as compared to the conventional invasive techniques (Suárez et al., 2015; Sevilla-Santos et al., 2019). This may be explained by the higher parasitic load in the upper layers of the skin and by the higher representation of the sample due to the larger extension of the lesion covered by the collection. Among the advantages of minimally invasive techniques are the feasibility of performing diagnostics in remote areas with minimum infrastructure, by staff with a secondary level of education with some training, the lower risk of complications for the patients, and a potentially lower cost. Minimally invasive approaches, when associated to molecular techniques centered on specific targets for the diagnosis of leishmaniasis, have achieved satisfactory performance (Dassou et al., 2020). Using polymerase chain reaction (PCR) with a kDNA target, samples obtained by swabbing and biopsy present similar sensitivity for the diagnosis of patients with both the cutaneous and the mucocutaneous forms of the disease, close to 93% (Faria et al., 2022; Boni et al., 2017; Gomes et al., 2017).

Among the isothermal amplification techniques, the most commonly used is LAMP (Loop-mediated Isothermal Amplification). Its advantages go beyond its high specificity, which is ensured by the set of primers that are used, being also related to its accessibility and ease of use and reading by visualizing the byproducts of the reaction. Data gathered in a recent systematic literature review revealed sensitivity ranging from 80% to 99%, and specificity ranging from 91% to 98% (Erber et al., 2022). Even though molecular isothermal amplification methods do not fulfill all the requirements of a true point-of-care diagnostic test due to the DNA extraction step, they are easy to use and require limited infrastructure, being feasible to implement even in contexts without any resources. Multicentric studies assessing how LAMP performs in real-world conditions and with different targets should be encouraged for further standardization.

Immunology techniques in different platforms connected to quick reading systems are also important candidates for a point-of-care test, especially those based on the detection of species-specific antigens, which have shown promising preliminary results (Freire et al., 2021). One of the few commercial tests available for the diagnosis of the cutaneous form of the disease is CL DetectTM (In Bios International Inc., Seattle, WA, USA), a rapid immunochromatography test that detects Leishmania antigen from samples obtained by means of biopsy or cytological brush of the ulcerated lesion with up to four months of evolution. Validation studies have shown a performance of more than 60% in regions where L. major or L. tropica predominate (Bennis et al., 2018; Vink et al., 2018). However, in other endemic regions, a significantly lower sensitivity, of approximately 30%, has been reported (De Silva et al., 2017; Schallig et al., 2019; van Henten et al., 2022).

In summary, despite promising preliminary results and some performance requirements already agreed upon, it is undeniable that there is long road ahead in the quest for the ideal test, especially considering the global reach of the disease and the wide diversity of its species and manifestations. The development and validation of new diagnostic tools guided by the objectives now described must become a priority for the current research on leishmaniasis. The adherence of both the scientific community and the research funding agencies to a common strategic agenda is paramount for the real transformation of the diagnostics scenario for dermic leishmaniasis.

References

Legummary leishmaniasis (TL) is a vector-borne disease caused by parasites of the genus Leishmania. This disease has a pleomorphic clinical behavior that varies from self-contained forms to chronic and severe manifestations which can be both cutaneous and mucosal. The complexity of TL in children depends on (i) the diversity of the immune response, which is influenced by genetic and acquired factors, (ii) the in situ immune response, which is influenced by genetic and acquired factors, and environmental conditions that can affect human exposure to the pathogen, but also modulate its immune response.

This spectrum of clinical manifestations is also affected by other factors, such as congenital or acquired immunosuppressive conditions, the age at which infection occurs, or the coexistence of transmissible and non-transmissible comorbidities. Age is known to influence multiple aspects, including clinical manifestations, the therapeutic response, and the risk of progression to mucosal leishmaniasis (ML). Several infections show a greater propensity to severity in infants or preschool children. This would be due to the immaturity of the innate and adaptive immune system, which acquires memory and strengthens with age and subsequently declines in old age. Immunological senescence, which affects the levels of IL-2, IFN-γ, T and B cell counts, and the excessive accumulation of regulatory T cells could be extrapolated to understand the immunological mechanisms occurring at the other age range; however, the lack of verification of these assumptions demonstrates the limited knowledge of the pathobiology of TL in the pediatric population.

The therapeutic failure of pentavalent antimonials (SbV₅) in the pediatric population varies between 40 and 70%, with the age group < 5 years having three times more risk of therapeutic failure. Miltefosine has shown to be an effective alternative for children, in spite of significant accessibility limitations due to the high cost and the absence of pediatric formulations. Amphotericin de-oxysololate and other formulations are essentially used as a second-line therapy, with the additional limitation that long periods of hospitalization are required for safe administration, although the adverse effects are less severe and frequent than those reported in adults (50 to 70% less). It has been shown that the difference in the therapeutic response between adults and children could be due to a lower bioavailability of SbV₅ and miltefosine as a result of the accelerated pharmacological metabolism in the pediatric population. This insufficient exposure could be reversed using allometric schemes (according to weight and height, as well as nutritional status) of drug administration.

Considering that more than 50% of those affected by TL in endemic areas are children, it is necessary to prioritize various aspects of the diagnosis and management of the pediatric population. As could be seen in the therapeutic aspects, clinical trials in this age group are scarce for several reasons: (i) children are a protected group in clinical trials and there is an excess of zeal in ethical regulations, which paradoxically limits the exploration of diagnostic and therapeutic alternatives in this age group; (ii) the lack of support from the pharmaceutical industry or funding institutions for leishmaniasis research; (iii) the neglected nature of leishmaniasis that confines its endemicity to low-income populations with poor access to health care.
The conduction of the clinical trial were ensured through a long selection process by the BNDES FUNTEC Program, with the positive advice of the Ministry of Health (Grant Agreement for Non-reimbursable Financial Collaboration No. 15.20473.1). This type of contract requires that at least 10% of the amount be provided as financial counterpart by the beneficiary, in this case Farmanguinhos, which suffered severe financial constraints in the following years. The Fiocruz Presidentry provided this contractual funding requirement using its own resources and those of Inova Program. Farmanguinhos and IRR/Fiocruz are regularly investing in the project by providing materials, equipment and personnel.

The fifth big challenge is the availability of the Active Pharmaceutical Ingredient (API). Despite our best efforts, we could identify only one supplier of paromomycin certified in good manufacturing practices: the Olon company, from Italy. After all these years of project development and the rise in the Euro/BRL exchange rate in 2020/2021, the API costs doubled. Therefore additional funding, and a few months’ extension of the project, were necessary, also because of production delays caused by the COVID-19 pandemic.

After the type of formulation was chosen, the clinical teams from IRR/Fiocruz and the Plataforma de Pesquisa e Clinica/Fiocruz set up the Phase III, multicentric, open-label, randomized, controlled trial to assess the non-inferiority of efficacy and safety of the extemporaneous paromomycin gel formulation for topical use in adult and adolescent patients with cutaneous leishmaniasis. Arm 1: 10% paromomycin gel, topical use, twice a day for 30 days, combined with a single intradermal application of meglumine antimoniate on the first day of treatment; Arm 2: three intradermal applications of meglumine antimoniate 15 days apart (the treatment recommended by the Ministry of Health). The trial will be conducted in three research centers: IRR/Fiocruz, Hospital Presidente Vargas - São Luís do Maranhão, and Hospital Universitário Clemente Faria - Universidade Estadual de Montes Claros (Unimoto). The project was approved by CONEP - Comissão Nacional de Ética em Pesquisa do Conselho Nacional de Saúde under the number 35331720.8000.5091 and registered on the Plataforma de Registro Brasileiro de Ensaios Clinicos – REBEC under the number RBR-4p69.

In December of 2020, Farmanguinhos submitted electronically the Clinical Drug Development Dossier (Dossiê de Desenvolvimento Clínico de Medicamento – DDCM) to ANVISA. Two requests for clarifications and additional information made by the Agency were answered on time. The Agency has not yet given its final answer. The complexity of the forms and ANVISA’s response times represent the sixth big challenge.

The development trajectory of paromomycin gel for the topical treatment of cutaneous leishmaniasis was underpinned by national public institutions that represent the strengths and weaknesses of a country in search of autonomony and sovereignty for its Health Industrial Complex.*

BUILDING A PATHWAY FOR TRANSLATIONAL DRUG DEVELOPMENT OF ORAL TREATMENTS FOR CUTANEOUS LEISHMANIASIS

C utaneous leishmaniasis (CL) remains a neglected disease for which new, safe, and orally efficacious drugs are urgently required. DNDI has been actively engaged in leishmaniasis R&D for over 15 years, and, together with multiple partners, has built an unprecedented portfolio of late-lead series and preclinical and clinical candidates originating from different chemical classes with different mechanisms of action against Leishmania parasites.

This promising portfolio of new chemical entities (NCEs) is currently being developed for visceral leishmaniasis (VL), aiming at the identification of short-course monotherapy(ies) and/or combination treatments. DNDI’s CL programme strategy is to leverage this rich portfolio by expanding its development to simultaneously identify new oral CL treatments and potential combinations with immunomodulators. This objective is strongly supported by previously generated data and ongoing investigative efforts, which clearly demonstrate the capacity of these candidates to be “expanded” for CL. Data includes patient in vitro profiles against a panel of CL-causing strains, in vivo proof-of-concept studies in animal models, and skin distribution potential obtained for some of these NCE candidates.1,2

References

References
However, translational CL research is notoriously challenging, and there are multiple gaps precluding the upstream clinical development of drug candidates for this disease, including (i) the need for a better understanding and prediction of how orally administered drugs distribute into the skin and interact with Leishmania parasites in the tissue, and (ii) the lack of robust and standardized animal models mimicking skin infection with some of the most relevant Leishmania species — such as L. braziliensis.

To address these important questions and build an innovative pathway for translational drug development of oral NCEs for CL, DNDi has partnered with an international group of academic experts, public–private partnerships, and industry from Brazil, the United Kingdom, the Netherlands, and France, to combine expertise in CL, drug discovery and development, pharmacokinetics (PK) and skin drug delivery, basic parasite biology, quantitative pharmacology, and modelling (see figure for project partners and responsibilities). This multidisciplinary project has recently been granted funding from Dioraphte, a private foundation from the Netherlands (https://www.dioraphte.nl/en/), for a three-year research program. The project is currently in the preparation phase.

The overall activities of the project are divided into two work packages that are connected to provide a rational workflow. The first work package comprises detailed analysis of skin and plasma exposure–efficacy response of promising antileishmanial NCEs using CL mouse models. Multiple technological platforms (microdialysis, liquid chromatography mass spectrometry, and quantitative mass spectrometry imaging) will be used for PK studies and bioanalysis, generating quantitative and spatial information about drug distribution in the different layers of healthy and infected mouse skin. State-of-the-art pharmacokinetic–pharmacodynamic (PKPD) modelling techniques will be employed to establish exposure–response relationships and determine required PK targets for these NCEs. Modern physiologically based pharmacokinetic (PBPK) modelling will be used for interspecies translation and scaling, providing fundamental insights on how systemically administered drugs distribute into skin tissues and interact with Leishmania parasites. By applying this new knowledge, improved predictions of human efficacious dose(s) will be generated, and measurable and testable human PK targets will be defined for future use and validation during CL Phase II clinical trials with these NCEs.

The second work package comprises the development of new tools for CL drug discovery, namely a long-awaited bioluminescent mouse skin model using L. braziliensis, the most clinically relevant and difficult to treat causative agent for CL in the Americas.

Building this CL drug development pathway will allow the generation of preclinical knowledge with high translational value for promising oral NCEs and will increase the probability of successful advancement of such candidates into future clinical trials.

As a result of this project, promising NCEs will be progressed faster to patients, alleviating unnecessary suffering in affected populations in endemic countries. In addition, the application of this translational platform could possibly be expanded to post-kala-azar dermal leishmaniasis, mucocutaneous leishmaniasis, and other parasitic skin diseases.