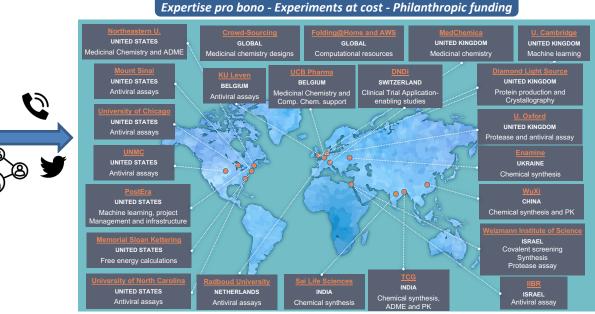

THE COVID MOONSHOT: SARS-COV-2 ORAL ANTIVIRAL THERAPEUTICS FROM AN OPEN SCIENCE GLOBAL COLLABORATION

Dr Ed Griffen MedChemica Ltd.

representing COVID Moonshot Team

COVID Moonshot – *spontaneous international collaboration*



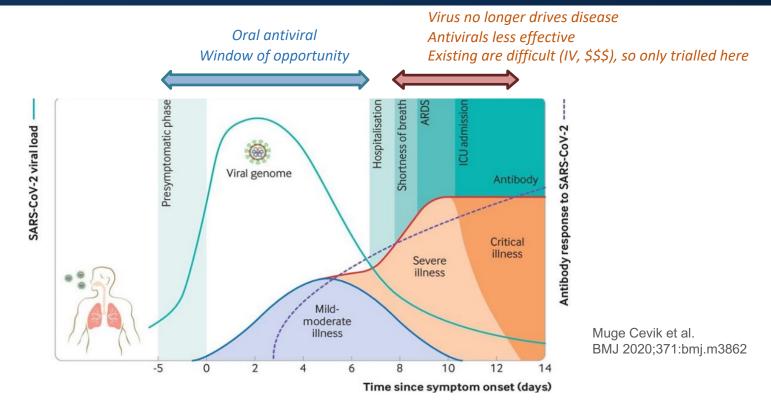
NATURE COMMUNICATIONS | (2020)11:5047 | <u>https://doi.org/10.1038/s41467-020-18709-w</u> NATURE | (2021) 594, 330-332 | <u>https://doi.org/10.1038/d41586-021-01571-1</u>

Unique constitution has led to speed

Open science

- Global, highly flexible team
- Cumulative 100s of years of big pharma experience
- Leading BSL3 antiviral and in vivo access

>30 groups

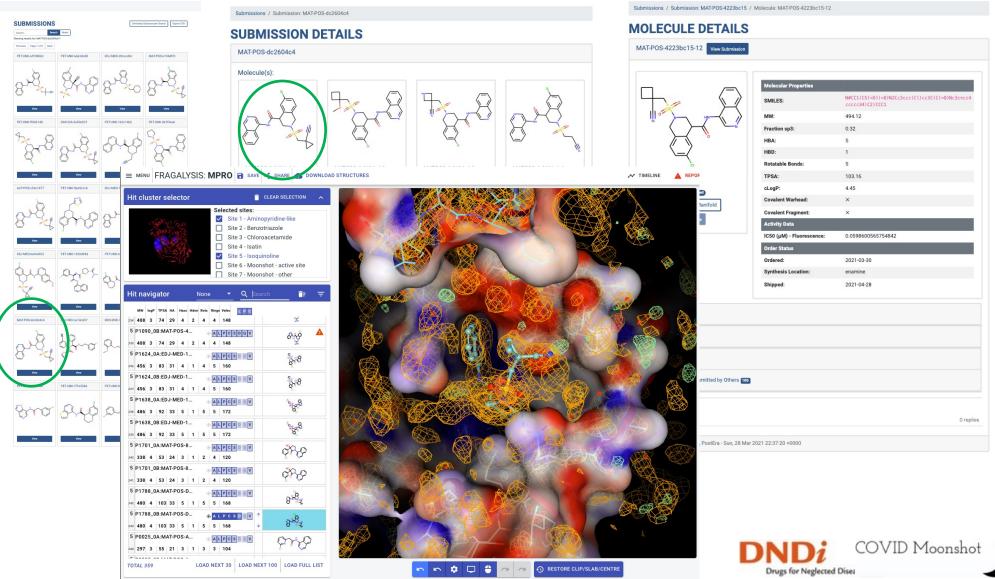

Strategic decisions and funding :

- Alpha Lee Postera & U of Cambridge
- John Chodera Memorial Sloane-Kettering
- Nir London Weizmann Institute
- Frank von Delft Diamond & U of Oxford
- Annette von Delft U of Oxford
- Ben Perry DNDi
- Tatiana Matviuk Enamine
- Ed Griffen MedChemica

2

Clinical ambition: craft the right antiviral

Our goal is an oral antiviral that is <u>very</u>: potent; safe; cheap; and widely useable. This would:


- Prevent disease: virus can be cleared, but must be before immune over-reaction (day 7)
- Prevent spread: post-exposure prophylaxis (before day 0)
- Reach non-vaccinated population (at risk; non-responsive; vaccine hesitant)
- \rightarrow reduce both hospitalisation and mortality

Open Science - what is accessible?

Plans and results are available live: x-ray structures: More via CDD

<u>https://covid.postera.ai/covid/submissions</u> <u>https://fragalysis.diamond.ac.uk/viewer/react/preview/target/Mpro</u>

Open Science - what does it mean?

Aiming for equitable, global access: - Our ambition is a "Direct-to-Generics" strategy

Plans, synthesis completion and assay results are all reported and date stamped

- Open public access includes > 350 protein-ligand crystal structures
- Further detail is available on CDD

Active strategy to maximise public good

- Consequences:
 - Open access to contribute to design
 - Fast collaborations no CDA, no MTA = access to BSL-3 facilities and animal models
 - Compounds are available in Enamine's catalogue immediately
 - Of course we post warnings:

All of the substances displayed on this site are designed to be biologically active. The prediction of toxic effects remains an extremely difficult problem. Therefore all materials described here should be treated as having high biological activity with a risk of severe toxicity which may include, but is not limited to: cardiac impairment up to and including the risk of causing cardiac arrest, irreversible liver or renal damage, carcinogenicity, mutagenicity, teratogenicity (risk to the unborn child) and, or generation of a severe allergic response. Unless otherwise stated, no material has been profiled for toxicological effects and therefore no materials should under any circumstances be synthesised and taken for any therapeutic or recreational effect by any person or for any other purpose.

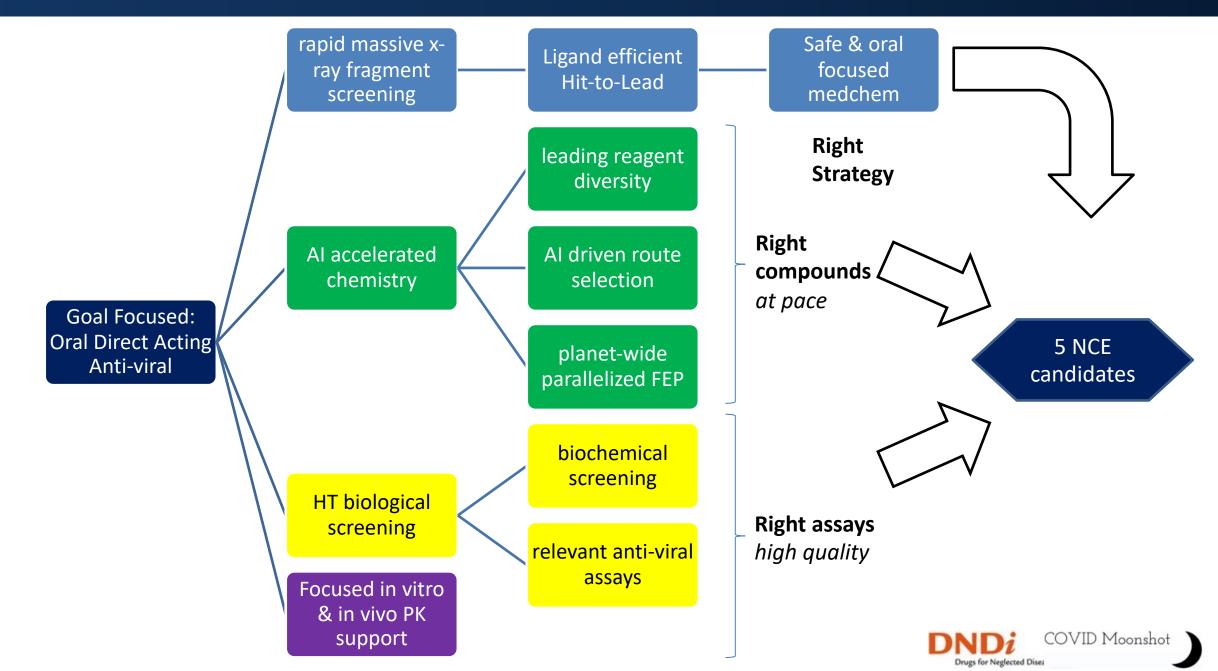
Medicinal Chemistry Target Product Profile

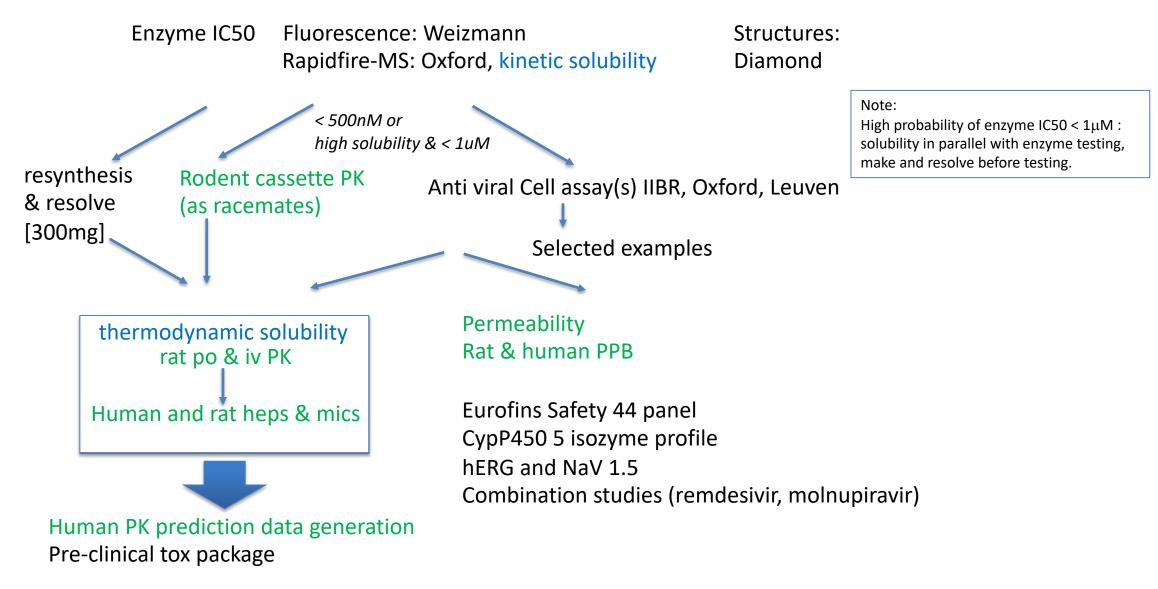
Orally bioavailable inhibitor for therapeutic and prophylactic use

Property	Target range							
protease assay	IC50 < 50 nM (compromise if clean and anti viral activity sufficient)							
viral replication (Vero-E6)	EC ₅₀ < 0.2μM							
plaque reduction (Vero-E6, Calu-3)	EC50 < 0.2μM							
PK-PD	Cmin > EC90 (plaque reduction) for 24h							
Coronavirus spectrum	SARS-CoV2 B1.1.7 , 501.V2, B.1.1.248 variants essential SARS-CoV-1 & MERS desirable							
Route of administration	oral							
solubility	> 5 mg/mL, >100µM tolerable							
half-life	Ideally>= 8 h (human) est from rat and dog							
safety	No significant protease activity >50% at 10μM (Nanosyn 61 protease panel) Only reversible and monitorable toxicities (NOAEL > 30x Cmax) No significant DDI - clean in 5 CYP450 isoforms Critical transporter check (<i>e.g.</i> OATP) hERG and NaV1.5 IC50 > 50 μM No significant change in QTc No mutagenicity or teratogenicity risk							

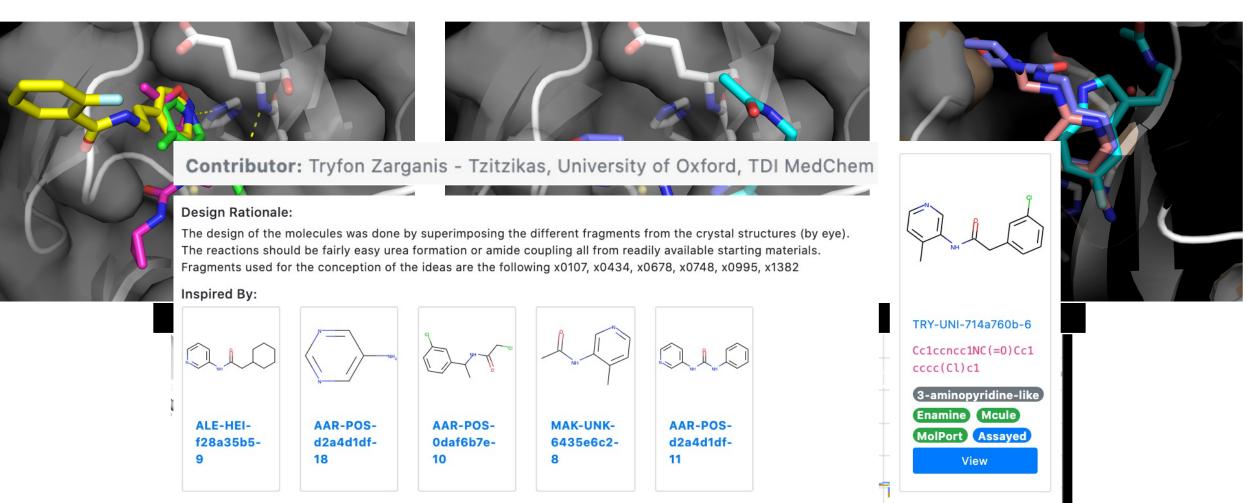
Assay Challenges

What animal model?


- Ferret default respiratory model very mild disease, little public PK data to understand metabolic processes, terrible lead times (17 weeks)
- Hamster severe disease and very strong metabolisers
- ACE-2 Humanised mouse or murine virus both a compromise
 - Or the pragmatic option: predicted human Cmin cover over EC90 in a relevant cell line?


What cell assay is relevant?

- VeroE6 available but immortalized monkey kidney cell line, interferon deficient, PGP over expressing
- Calu-3, A549 immortal human lung lines
- Replicon assay only recently available(not March 2020)
- Pneumocytes the gold standard not accessible for screening
 - More serious problem is access to BSL-3 facility....
 - Multiple collaborators IIBR, Oxford, Leuven
- Enzyme assays
 - Mpro not trivial to handle, autocatalytic in own destruction, forms dimer with one active site
 - FRET assay, Weizmann Institute
 - Rapidfire-MS Oxford

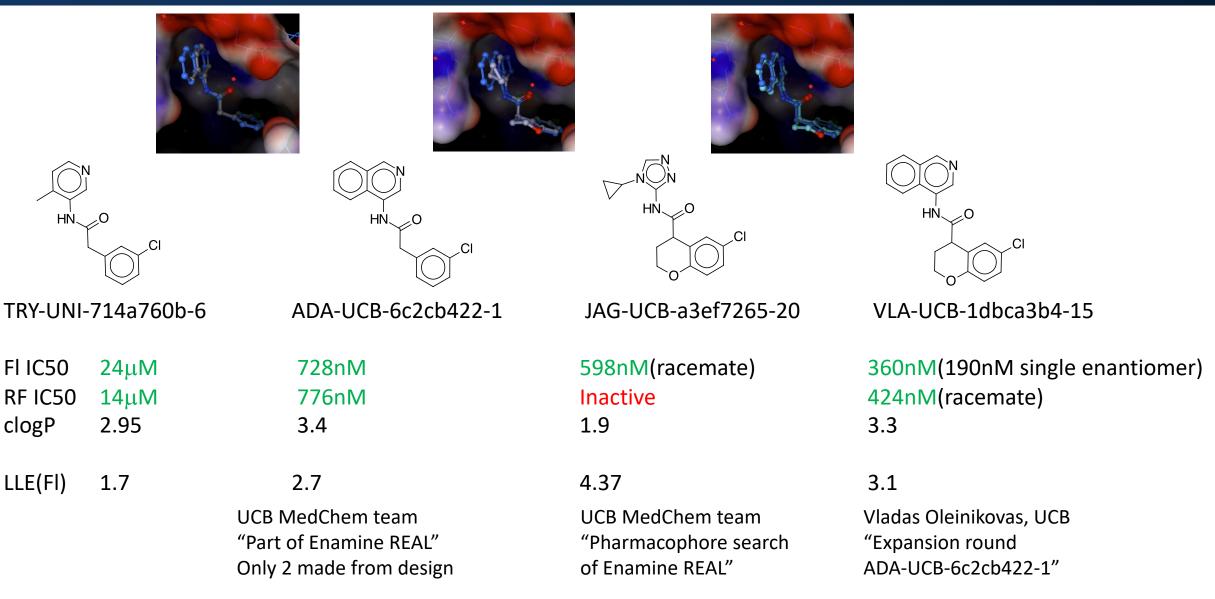


Key elements of the COVID Moonshot

Drugs for Neglected Disea

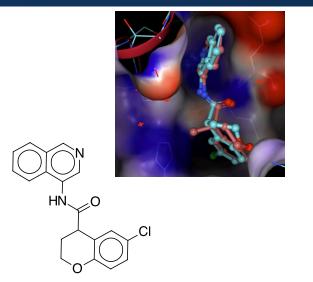
24µM

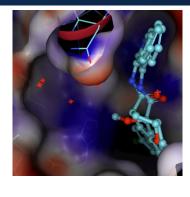
10

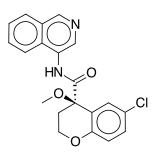

COVID Moonshot – design principles:

Aim for small, efficient molecules

- Less opportunity for off target effects
- Reduce permeability and metabolic risks
- Keep within the substrate envelope to minimize resistance risks
- Simplicity of compounds reduce cost of development and cost of goods = speed of development and equitable access
- Avoid peptidomimetics
 - Present a different development and toxicity risk profile
- Covalency
 - Make the compounds potent and selective first add covalent warhead if needed
 - Efficient selective ligand rather than "hot" warhead
- What effect on broader spectrum "pan coronavirus"? not a primary goal of this program


Aminopyridine early optimization




OVID Moonshot

Drugs for Neglected Dise

Isoquinolines – building potency

VLA-UCB-1dbca3b4-15

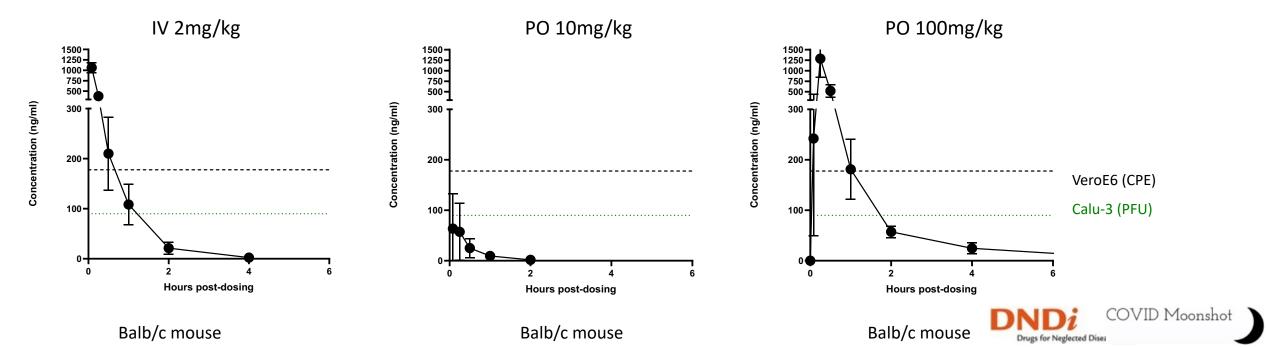
EDJ-MED-e4b030d8-13

FI IC50190nM (single enantiomer)clogP3.3LLE(FI)3.4

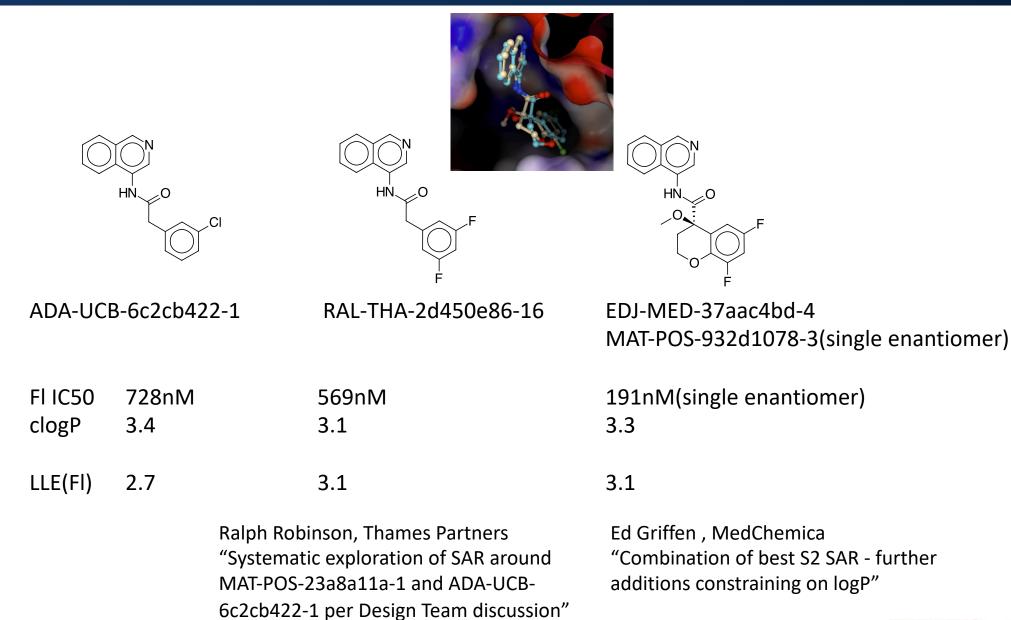
r) 284nM (single enantiomer) 3.9 2.7

Ed Griffen, MedChemica "Using MPro-x10942 as structural guidance. Key goal is to bias amide into axial position conformation and add small substituents to increase potency" PET-UNK-29afea89-2

84nM(single enantiomer) 3.2 3.9


Peter Kenny,

"two linker prototypes that might be used to provide access the S1' subsite from the C4 (chiral center) of the dihydrobenzopyran"


Isoquinolines – profiling leads

															1																			
				Activity	/			ADM	E			Off-t	arget	in vitro	stability	ŝ			in viv	o PK														
Postera ID	Structure					-		-	log P Structure	-	-			log P	Antiviral ICS0 (µM)	Antiviral ICS0 (µM)	Protease IC50 (µM)	Solubility (uM)	HLM t _{1/2} (/min)	HLM CLint (µg/min/ mg prot)	RLM t _{1/2} (/min)	RLM CLint (µg/min/ mg prot)	permeability Mean Papp (10 ⁻ ⁶ /cms)	CYP inhibition (IC50)	Protease most potent hit	Human Heps t _{1/2} (/min) Heps Clint	Rat Heps t _{1/2} (/min)		Species in vivo	Oral t _{1/2} (/min)	IV t _{1/2} (/min)	Bio-avail.	Free drug hu/rat (%)	
					Fluorescence (Weizmann)		Human live	r microsms	Rat liver	microsms	MDCK-MDR1 A2B	5 Cyp profile	Nanosyn panel 40 proteases	Human hepatocytes	Rat he	patocytes																		
VLA-UCB-1dbca3b4-15		3.33	2.51	1.06	0.19	33	14	98.3			41	8uM 2C9 3uM 3A4	clean		17.8	78.1	Rat	60	formulation issues	-	12 (rat)													
PET-UNK-29afea89-2		3.16	0.5 (n=2)	0.3	0.08 (n=2)	130	97	17	16	109	20			34 19	54	26	Rat	160	104	17	4/10													

Good medicinal chemistry can be rewarded

28 compounds made & assayed

OVID Moonshot

Drugs for Neglected Disea

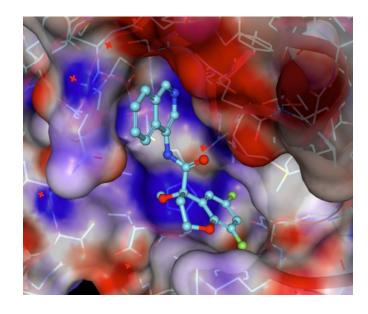
Isoquinolines – Pushing the lead compounds

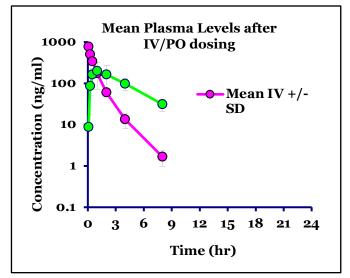
																	-					
				Activity	Y			ADM	E			Off-ta	irget	in vitro	stability				in vivo	PK		
Postera ID	Structure	log P	Antiviral ICSO (µM)	Antiviral ICS0 (µM)		Solubility (uM)	HLM t _{1/2} (/min)	HLM CLint (µg/min/ mg prot)	RLM t _{1/2} (/min)	RLM CLint (µg/min/ mg prot)		CYP inhibition (IC50)	Protease most potent hit	Human Heps t _{1/2} (/min) Heps Clint	Rat Heps t _{1/2} (/min)		Species in vivo	Oral t _{1/2} (/min)	IV t _{1/2} (/min)	Bio-avail.	Eree drug	Calc.dose 70kg hum (mg)
			Vero6 CPE (IIBR)		Fluorescence (Weizmann)		Human live	r microsms	Rat liver	microsms	MDCK-MDR1 A2B	5 Cyp profile	Nanosyn panel 40 proteases	Human hepatocytes	Rat hep	oatocytes						
VLA-UCB-1dbca3b4-15		3.33	2.51	1.06	0.19	33	14	98.3			41	8uM 2C9 3uM 3A4	clean		17.8	78.1	Rat	60	formulation issues	-	12 (rat)	
MAT-POS-932d1078-3		2.84	0.3(n=2)	0.126	0.191	375 (kinetic)	68	25	24	70				60 12	56	25	Rat	171	70	31	10/20	
PET-UNK-29afea89-2		3.16	0.5 (n=2)	0.3	0.08 (n=2)	130	97	17	16	109	20			34 19	54	26	Rat	160	104	17	4/10	

Human Dose Prediction – MAT-POS-932d1078-3

External ID	Structure	MPro Avg IC50 (uM)	Vero6_CoV2 _WT_CPE_IIB R: Avg IC50 (μM)		PPB_human: PPB (%)	PPB_rat: PPB (%)	PPB_2%_FCS : PPB (%)	Solubility Aqueous Kinetic: Solubility (µM)
MAT-POS-932d1078-3		0.191	0.332	0.126	89.6	79.3	12	375
		human: CLint mean	microsome_ rat: CLint mean (μl/min/mg)	microsome_dog: Clint mean (μl/min/mg)	hepatocytes _human: CLint mean (μg/min/10^ 6 cells)	hepatocytes _rat: CLint mean (μg/min/10^ 6 cells)		
		25.3	70.1	44.8	11.6	24.6		
				harmacokinetics_I				
		Dose (mg/kg	Vd (avg)	CL (avg) (ml/min/kg)	T 1/2 (avg) (h)	AUC last (avg) (rg.h/ml)		
		2	3.48	56.9	1.17	594		
			P	harmacokinetics_P	0			
		Dose (mg/kg)	Cmax (avg) (ng/ml)	Tmax (avg) (h)	T 1/2 (avg) (h)	AUC last (avg) (ng.h/ml)	%ВА	
		10	205	0.833	2.86	792	31	

- In vitro and in vivo ADMET measurements with cell potency and PPB
 - Hu dose prediction
 - Average predicted Hu Cl_{plasma}
 - Predicted human Vss (based on rat)
 - Predicted human Bioavailability
 - Predicted human t1/2
 - Targeted Cmin,ss = 3.2 μM (EC50 = 333 nM free (378 nM total, Fu assay 0.88), corrected for human fu,p=0.104)

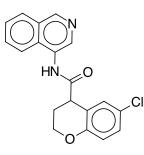

= 1.76 L/kg


= 63%

= 2.8 h

= 7.2 ml/min/kg

• 985mg TID (300 – 3000mg) – requires 2nd species to generate precision on estimate



Drugs for Neglected Disea

COVID Moonshot

Is the benzopyran the problem? Matched Molecular Pair Analysis

VLA-UCB-1dbca3b4-15

Also see poster:

P20: Exploiting automated R group core and table generation from matched molecular pair data to accelerate SARS-CoV2 therapeutic discovery

Lauren Reid, MedChemica

		x_3 x_2 x_1	CI
X1	X2	X3	IC50/nM
0	CH ₂	CH ₂	360
CH ₂	0	CH ₂	7943
CH_2	CH ₂	CH ₂	316
S	CH ₂	CH ₂	200
SO ₂	CH ₂	CH ₂	316
NH	CH ₂	CH ₂	251
NH	C=0	CH ₂	398
NMe	CH ₂	CH ₂	398
NAc	CH ₂	CH ₂	1000
C=O	NH	CH ₂	200
CH ₂	NMe	CH ₂	1995
CH ₂	NAc	CH ₂	398
CH ₂	NH	CH ₂	1995
CH ₂	CH ₂	NH	1259
CH ₂	CH ₂	NMe	3162

Polarity tolerated at X_1 and X_2

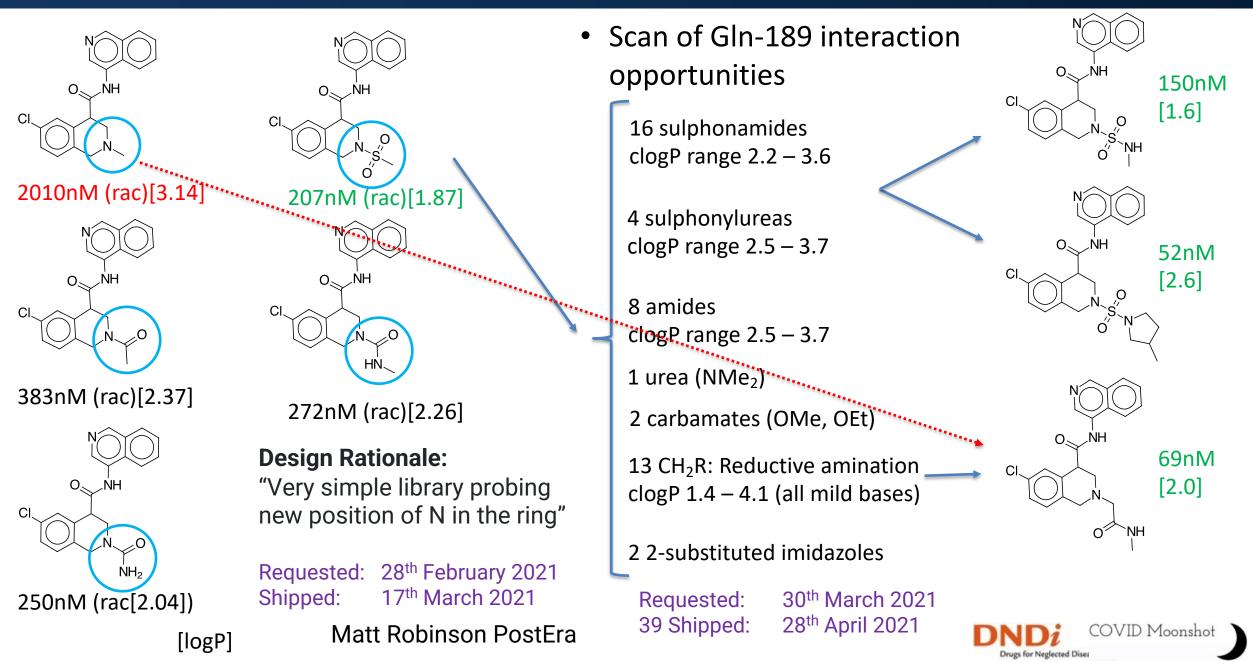
Non basic tetrahydroisoquinoline looks promising...

18

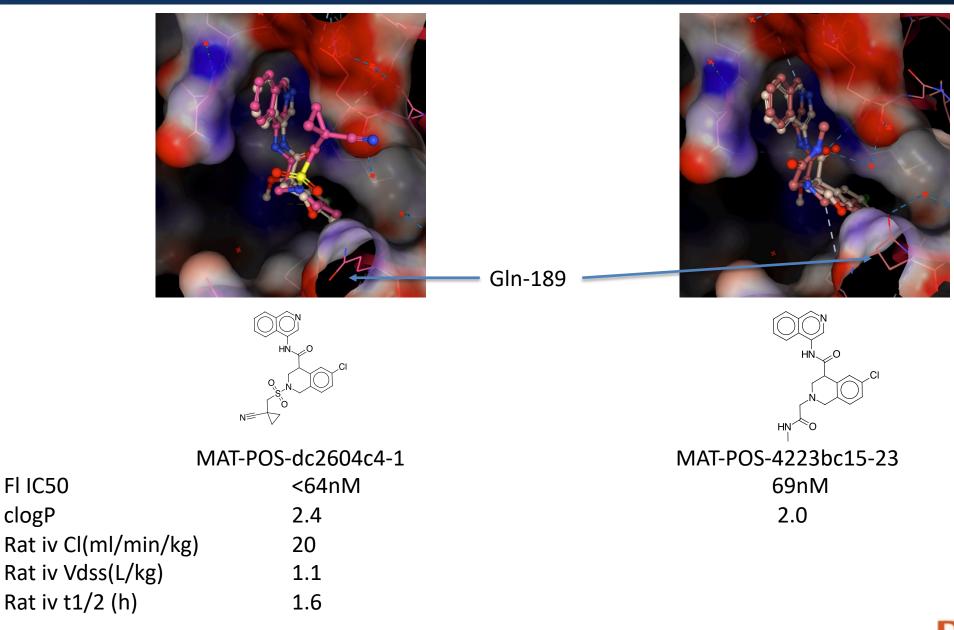
Over Design:

- Over-estimating ability to predict potency/solubility/clearance
- Molecules are too complex

- Hard = slow to make
- Too few molecules made to understand SAR

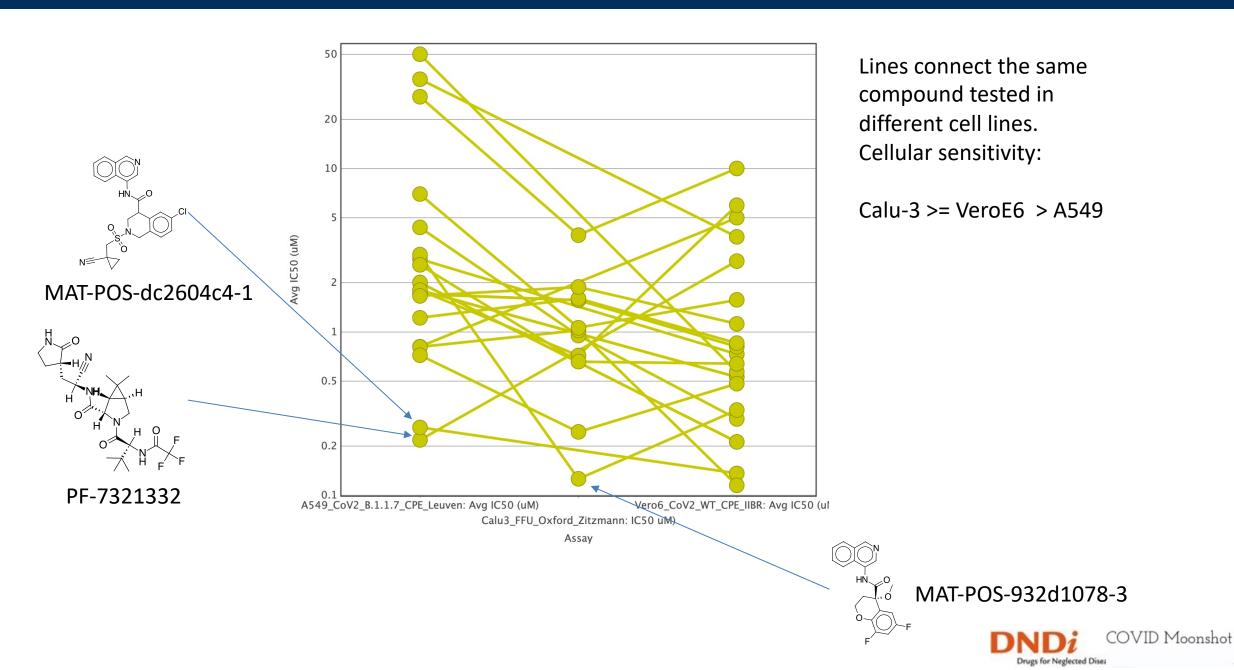

Under Design:

- Failure to take into account established SAR
- Making molecules with poor physical properties
- Making insufficiently diverse compounds
- Inactivity
- Insolubility
- Lack of cell permeability


"Goldilock's" Design MAT-POS-4223bc15

Tetrahydroisoquinolines: profiling in progress

FI IC50

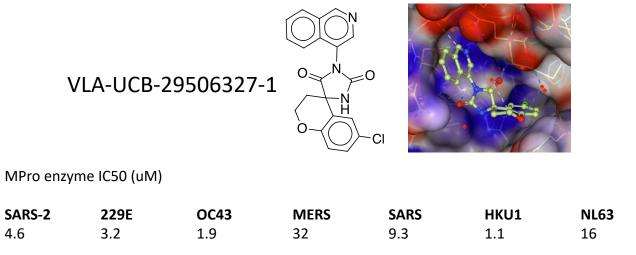

clogP

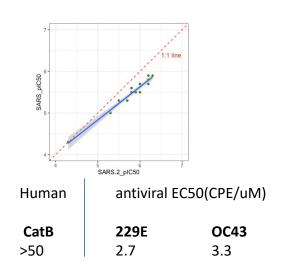
COVID Moonshot

Drugs for Neglected Disea

Anti Viral Cell data: context across cell lines

Medicinal Chemistry Target Product Profile - Status


Orally bioavailable inhibitor for therapeutic and prophylactic use


Property	Target range		Cold start – March 2020→ August 2021
protease assay	IC₅₀ < 50 nM (compromise if clean and anti viral activity sufficient)	•	25nM
viral replication (Vero-E6)	EC ₅₀ < 0.2μM	0	<0.2 μM VeroE6 CPE
plaque reduction (Vero-E6, Calu-3)	EC ₅₀ < 0.2μM	•	~0.25 μM Calu3
PK-PD	Cmin > EC90 (plaque reduction) for 24h	0	Studies planned once exposure adequate
Coronavirus spectrum	SARS-CoV2 B1.1.7 , 501.V2, B.1.1.248 variants essential SARS-CoV-1 & MERS desirable	0	Active against B1.1.7 , 501.V2 in cellular assays Compounds tested across coronavirus MPro panel
Route of administration	oral	0	F > 30% rat
solubility	> 5 mg/mL, >100µM tolerable	•	>100µM
half-life	Ideally>= 8 h (human) est from rat and dog		Rat 2h, Human predicted PK not yet sufficient
safety	No significant protease activity >50% at 10μM (Nanosyn 61 protease panel) Only reversible and monitorable toxicities (NOAEL > 30x Cmax) No significant DDI - clean in 5 CYP450 isoforms Critical transporter check (<i>e.g.</i> OATP) hERG and NaV1.5 IC50 > 50 μM No significant change in QTc No mutagenicity or teratogenicity risk		Protease panel clean Eurofins / CEREP 44 target panel clean Cyp450: 1.8μM 2C9, 10μM 3A4, mitigation SAR determined Cardiotoxicity in vitro initial compounds clean Live phase planned Ames in progress

Drugs for Neglected Disea

What I couldn't tell you about in 20 minutes...

- Isoquinoline potency and metabolism SAR data still incoming, but 6 & 7 substitution looks promising to increase metabolic stability while maintaining potency
- Search for isoquinoline replacements application of FEP predictions
- Extension into P1' synthetic constraints & FEP predictions on a vast scale
- Al supported compound and route design
- Spiro linkers and pan-corona activity

rugs for Neglected Disea

OVID Moonshot

The COVID Moonshot Team

Highlighting the design team & chemists

131 co-authors and growing...

CSH Spring

New Results

Hadeer Zidane, D Nicole Zitzmann doi: https://doi.org/10.1101/2020.10.29.339317

bioRχiv Jag Heer Mark Calmiano UCB Eric Jnoff bioRxiv is receiving many new papers on coronavirus SARS-CoV-2. A reminder: these are preliminary reports that have not be practice/health-related behavior, or be reported in news media as established information Vladas Oleinkovas COVID Moonshot: Open Science Discovery of SARS-CoV-2 Main Protease Inhibitors by Combining Crowdsourcing, High-Throughput Experiments, **Computational Simulations, and Machine Learning** Alpha Lee Postera Al The COVID Moonshot Consortium, Hagit Achdout, 😳 Anthony Aimon, Elad Bar-David, Haim Barr, Matt Robinson Amir Ben-Shmuel, James Bennett, 10 Melissa L Bobby, 10 Juliane Brun, BVNBS Sarma, Mark Calmiano, Anna Carbery, Emma Cattermole, 🧐 John D. Chodera, Austin Clyde, 🌀 Joseph E. Coffland, Galit Cohen, Jason Cole, Alessandro Contini, Lisa Cox, Milan Cvitkovic, Alex Dias, Alice Douangamath, Shirly Duberstein Charline Giroud, 😳 William G. Glass, Robert Glen, Itai Glinert, Marian Gorichko, 😳 Tyler Gorrie-Stone, 💿 Edward J Griffen, Jag Heer, 💿 Michelle Hill, Sam Horrell, Matthew F.D. Hurley, Tomer Israely, Andrew Jajack **Ralph Robinson** Eric Jnoff, Tobias John, Anastassia L. Kantsadi, 😳 Peter W. Kenny, 😳 John L. Kiappes, 😳 Lizbe Koekeme Boris Kovar, 😳 Tobias Krojer, 😳 Alpha Albert Lee, 😳 Bruce A. Lefker, Haim Levy, 😳 Nir London, Petra Lukacik 😳 Hannah Bruce Macdonald, Beth MacLean, 😳 Tika R. Malla, Tatiana Matviiuk, Willam McCorkindale, **Thames Partners Bruce Lefker** Sharon Melamed, Oleg Michurin, Halina Mikolajek, Aaron Morris, (D) Garrett M. Morris, Melody Jane Morwitzer Demetri Moustakas, 🙆 Jose Brandao Neto, 🕲 Vladas Oleinikovas, 🕲 Gijs J. Overheul, David Owen, Ruby Pai Jin Pan, Nir Paran, Benjamin Perry, Maneesh Pingle, Jakir Pinjari, Boaz Politi, 🧿 Ailsa Powell, Vladimir Psenak, Reut Puni, 😳 Victor L. Rangel, Rambabu N. Reddi, St Patrick Reid, Efrat Resnick, Matthew C. Robinson, Gwen Fate (PK) Ralph P. Robinson, 🐵 Dominic Rufa, 🐵 Christopher Schofield, Aarif Shaikh, Jiye Shi, Khriesto Shurrush Assa Sittner, Rachael Skyner, Adam Smalley, 😳 Mihaela D. Smilova, 😳 John Spencer, Claire Strain-Damerell, Vishwanath Swamy, Hadas Tamir, Rachael Tennant, 😳 Andrew Thompson, 🔞 Warren Thompson, Susana Tomasio Anthony Tumber, 💿 Ioannis Vakonakis, 💿 Ronald P. van Rij, 💿 Finny S. Varghese, Mariana Vaschetto, Einat B. Vitner, Vincent Voelz, 💿 Annette von Delft, 💿 Frank von Delft, Martin Walsh, Walter Ward, Charlie Weatherall, Shay Weiss, 😳 Conor Francis Wild, Matthew Wittmann, Nathan Wright, Yfat Yahalom-Ronen, Daniel Zaidmann Ben Perry DNDi This article is a preprint and has not been certified by peer review [what does this mean?] Peter Sjö https://doi.org/10.1101/2020.10.29.339317 University of Cambridge **Bobby Glen** Tatiana Matviuk Enamine & all the chemists Weizmann Institute Haim Barr (Mpro assays) **Diamond Light Source** Darren Fearon (crystallography)

Inspired by patients. Driven by science.

NOVARTIS

Drugs for Neglected Disea

OVID Moonshot