ADVANCES AND CHALLENGES IN THE TREATMENT OF CHAGAS DISEASE - A GLOBAL PERSPECTIVE

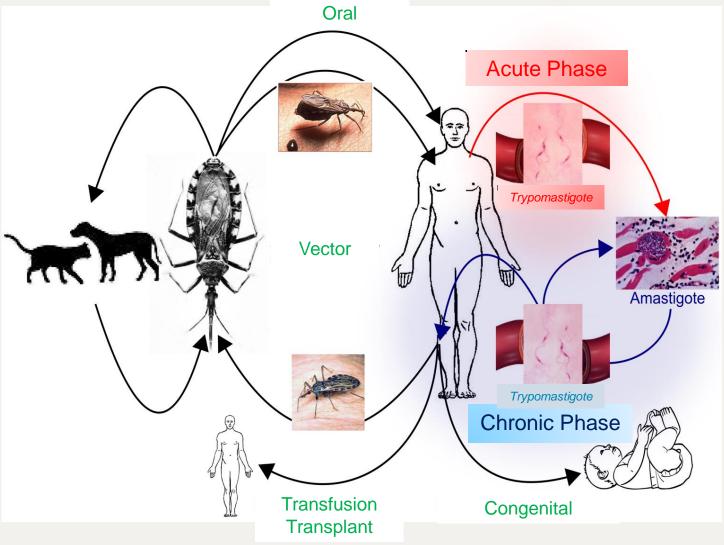
ICID 2018

Sergio Sosa-Estani, PhD

History of Chagas disease

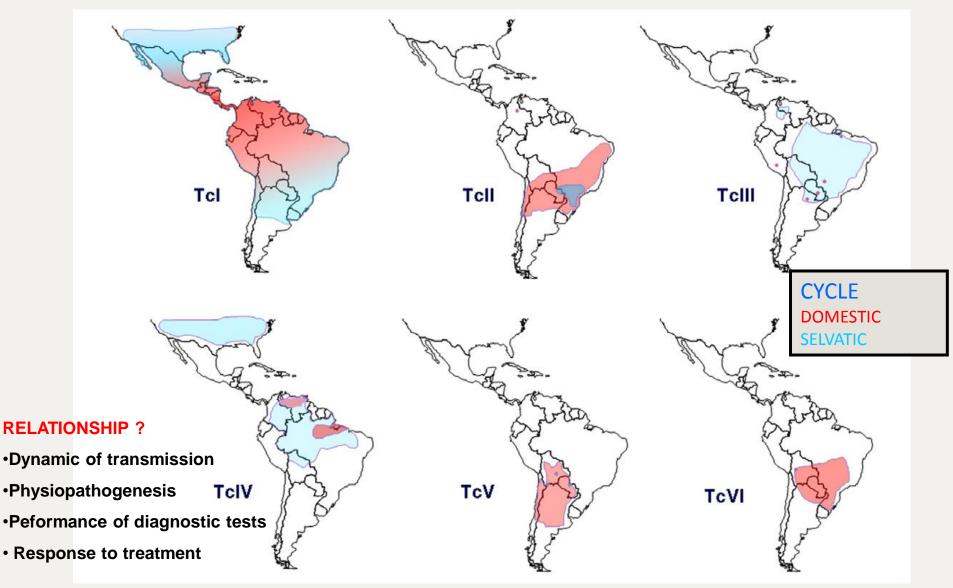
9,000 BC people with *T. cruzi* infection (mummies)

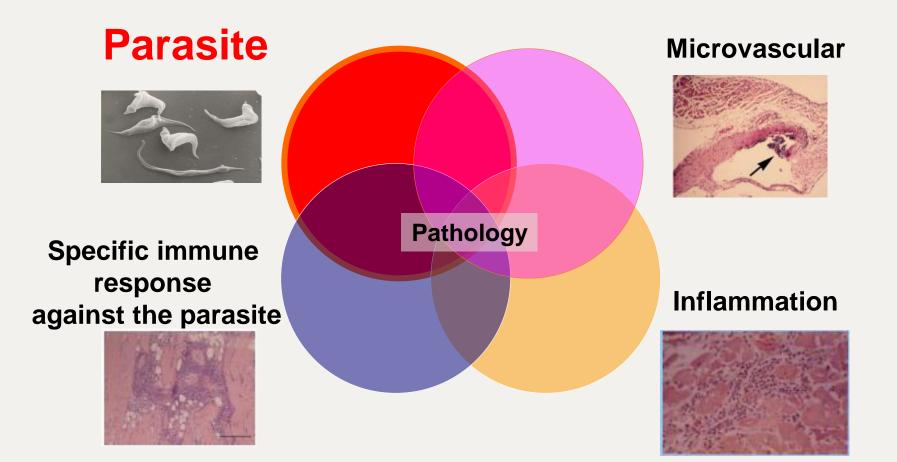
1909 Discovery 1920 Diagnostic 1950 Vector Control


1960-1970 Treatment 1995-2018 >>>

Treatment – biomarkers

Access


Life cycle of Trypanosoma cruzi


GEOGRAPHICAL DISTRIBUTION OF DTU *Trypanosoma cruzi*. Zingales *et al*, 2012.

DND

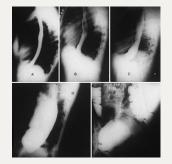
4

Chagas disease: Physiopathology

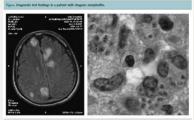
CHAGAS DISEASE PHASES OF INFECTION AND CLINICAL FORMS

ACUTE PHASE (2 months) Prolonged fever syndrome

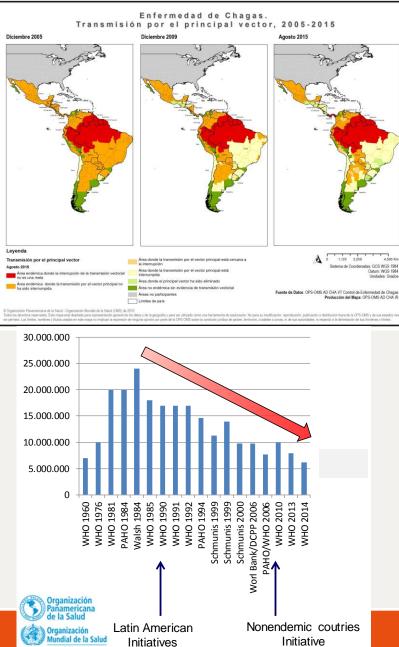
Vector transmission Congenital transmission Accidents

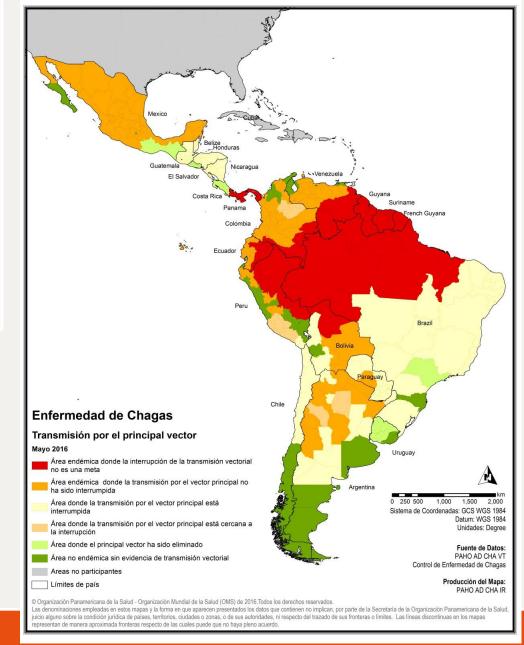


CHRONIC PHASE (decades)


Without demonstrable disease With demonstrable disease Cardiac form Digestive form (megas) Mixed forms and other

REACTIVATION OF CHRONIC INFECTION (eventual)


Co-infection (HIV/AIDS) Other causes of immunodeficiency (oncology, transplant)


fb. Contrast-robusted. T1-weighted magnetic resonance imaging (anial cut) of the brain showing multiple stag-robusteing lesions. Right: Brain biop owing red kinetopham indicative of the anneatyper from of Typosessona reasi.

Elimination of intra-domiciliary vectorial transmission of Chagas disease in Latin America (2020)

Amóricas



Global distribution of Chagas disease cases, based on official estimates, 2006–2017 (WHO, 4th NTD report, 2017)

Around 7,000,000 infected and < 18,000 patients treated/year

- Most common parasitic disease in the Americas
- Leading cause of infectious myocarditis worldwide
- Largest disease burden in chronic indeterminate patients
- 20-30% will evolve to cardiomyopathy with important morbidity and mortality
- Only 2 registered compounds: BZN and nifurtimox

A NEW PARADIGM IN THE 21ST CENTURY

Towards a Paradigm Shift in the Treatment of Chronic Chagas Disease

R. Viotti, B. Alarcón de Noya, T. Araujo-Jorge, M. J. Grijalva, F. Guhl, M. C. López, J. M. Ramsey, I. Ribeiro, A. G. Schijman, S. Sosa-Estani, F. Torrico and J. Gascon Antimicrob. Agents Chemother. 2014, 58(2):635. DOI: 10.1128/AAC.01662-13. Published Ahead of Print 18 November 2013.

New Paradigm

Acute Phase Acute and Chronic Phase

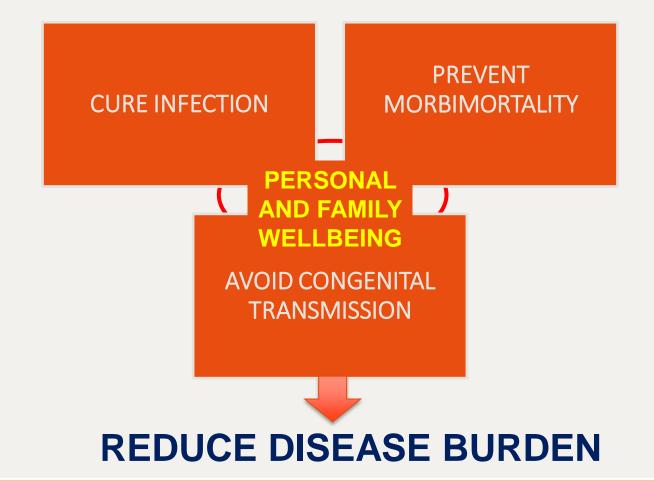

Old Paradigm

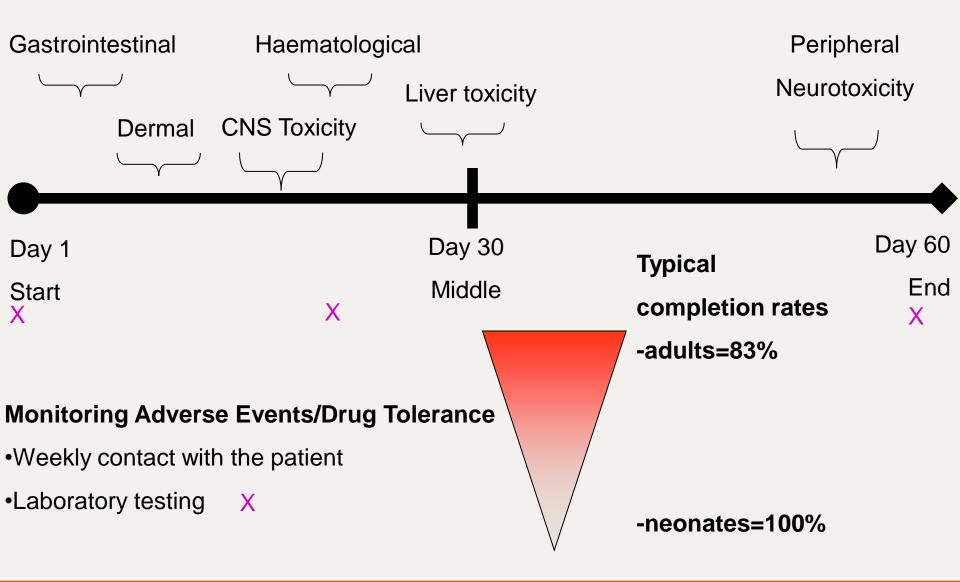
FIG 1 Comparison of concepts belonging to the old and the new paradigms for chronic Chagas disease. Relevant references are given in parentheses.

GOAL OF TIMELY DIAGNOSIS AND TREATMENT

Guidelines for antitrypanosmal treatment with benznidazole or nifurtimox

Varying strengths of recommendation (A-E) and levels of evidence (I-III)

- All patients in the acute phase (A I; A II)
- Children and young adult patients in the chronic phase (AI)
- Women of childbearing age (A II)
- Adults undergoing the chronic phase (B II; C II)
- Laboratory or surgical accidents (B III)
- Organ transplant recipients or donors (A III)



Timeline of side effects of benznidazole and nifurtimox

Sosa-Estani et al. J Trop Med. 2012;2012:292138.

Assessing response to etiological treatment

PRIMARY CRITERIA

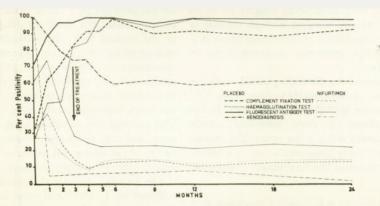
- Demonstration of no clinical progression
- Wellbeing (clinical evolution)

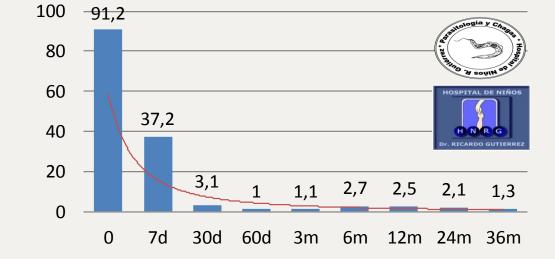
SECONDARY CRITERIA

- Failure: Detecting parasite presence using molecular tests (PCR)
 - Time range: end of treatment to month/years post-treatment
- Success: serological negativization
 - Acute phase: Follow-up for 24 months post-tx
 - Chronic phase: Long-term follow-up, every 1-3 years.

TREATMENT impact again infection

Effects during the acute phase




Figure 1. Serological and parasitological evolution in acute Chagas' infection (51 untreated patients and 550 treated with nifurtimox).

Acute Phase: Decrease in antibodies and parasitemia

Cohort of 206 BZN- treated children

Percentage of positive PCR at follow-up

DNDi Drugs for Neglected Diseases in

Effects during the early chronic phase

Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection

100 3

Ana Lucia S Sgambatti de Andrade, Fabio Zicker, Renato Mauricio de Oliveira, Simonne Almeida e Silva, Alejandro Luquetti, Luiz R Travassos, Igor C Almeida, Soraya S de Andrade, João Guimarães de Andrade, Celina M T Martelli

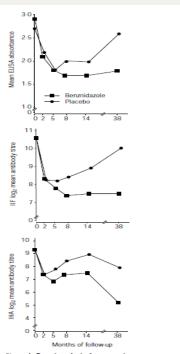
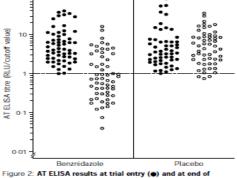
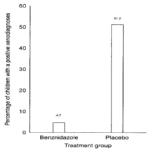



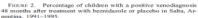
Figure 4: T cruzi serological response in benznidazole and placebo groups by time Error bars indicate 95% CI. IIF–Indirect immunofluorescence; IHA-Indirect haemagglutination.

THE LANCET

follow-up ()) for 58 benznidazole-treated and 54 placebotreated children who completed trial treatment Broken horizontal line-cut-off; values below this indicate seronegativity.

Am. J. Trop. Med. Hyg., 59(4), 1998, pp. 526-529 Copyright © 1998 by The American Society of Tropical Medicine and Hygiene


EFFICACY OF CHEMOTHERAPY WITH BENZNIDAZOLE IN CHILDREN IN THE INDETERMINATE PHASE OF CHAGAS' DISEASE


SERGIO SOSA ESTANI, ELSA LEONOR SEGURA, ANDRES MARIANO RUIZ, ELSA VELAZQUEZ, BETINA MABEL PORCEL, AND CRISTINA YAMPOTIS

Centro Nacional de Diagnóstico e Investigación de Endemo-Epidemias/Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Dr. Carlos G. Malbrán, Buenos Aires, Argentina; Instituto Nacional de Parasitología Dr. Mario Fatala Chaben/ ANLIS, Secretaria de Salud, Ministerio de Salud y Acción Social de la Nación, Buenos Aires, Argentina; Hospital San Roque, Ministerio de Salud de la Provincia, Embarción Salta, Argentina

Serologic follow-up of children treated with benznidazole or placebo to 48 months post-treatment in Salta, Argentina, 1991-1995*

				IHA				IFA				EIA	
Treatment	n	Mean	SD	Test		Mean	SD	Test		Mean	SD	Test	
Benznidazole													
Pretreatment	51	7.98	1.82	7 DF	1 DF	7.05	1.12	7 DF	1 DF	0.467	0.099	7 DF	1 DF
End of treatment	47	7.68	2.14		NS	6.57	1.58		NS	0.433	0.110		NS
3 months	45	7.26	2.33		NS	6.27	1.28		P < 0.01	0.409	0.112		P<0.01
6 months	45	7.00	2.53		P<0.05	6.11	1.57		P<0.001	0.371	0.115		P<0.00
12 months	48	7.00	2.27		P < 0.05	5.87	1.56		P < 0.001	0.369	0.107		P < 0.00
18 months	47	6.53	2.62		P<0.001	5.80	1.82		P<0.001	0.358	0.120		P<0.00
24 months	46	6.80	2.26		P<0.01	5.32	2.03		P<0.001	0.330	0.098		P<0.00
48 months	44	5.93	2.11	P < 0.001	P < 0.001	5.65	2.18	P<0.001	P<0.001	0.343	0.094	P<0.001	P < 0.00
Placebo													
Pretreatment	50	8.00	1.16	7 DF	1 DF	6.80	1.22	7 DF	1 DF	0.472	0.095	7 DF	1 DF
End of treatment	45	8.11	1.21		NS	6.80	1.07		NS	0,492	0.090		NS
3 months	44	8.11	1.10		NS	6.54	1.15		NS	0.489	0.098		NS
6 months	39	7.87	1.34		NS	6.61	1.60		NS	0.477	0.101		NS
12 months	47	8.08	1.26		NS	6.40	1.13		NS	0.476	0.113		NS
18 months	48	7.93	1.17		NS	6.47	1.16		NS	0.464	0.108		NS
24 months	49	7.77	1.22		NS	6.34	1.54		NS	0,479	0.104		NS
48 months	44	7.47	0.95	NS	P<0.05	6.97	2.21	P < 0.05	P<0.05	0.501	0.115	NS	NS

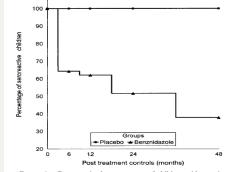
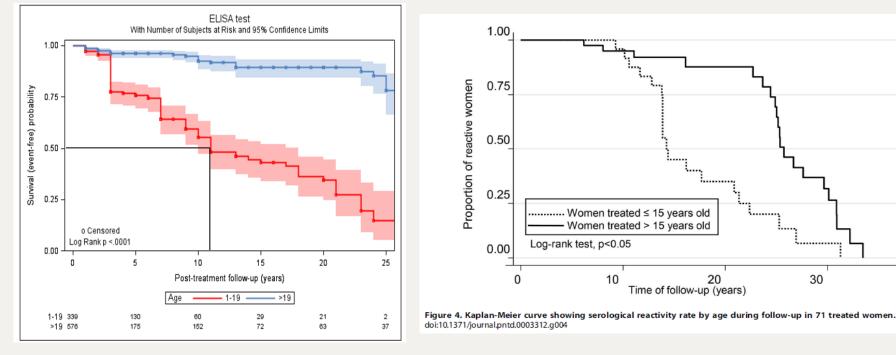


FIGURE 1. Decrease in the percentage of children with reactive serology against Trypanosoma cruzi (indeterminate phase of Chagas' disease) by enzyme immunoassay using the F29 protein after treatment with benznidazole or placebo in Salta, Argentina, 1991-1995

Course of serological outcomes in treated subjects with chronic Trypanosoma cruzi infection: a systematic review and metaanalysis of individual participant data.

ELISA test ~ age at treatment


OPEN OCCESS Freely available online

Trypanocide Treatment of Women Infected with *Trypanosoma cruzi* and Its Effect on Preventing Congenital Chagas

40

Diana L. Fabbro¹, Emmaria Danesi², Veronica Olivera¹, Maria Olenka Codebó³, Susana Denner¹, Cecilia Heredia², Mirtha Streiger¹, Sergio Sosa-Estani^{2,3}*

Sguassero et al. Unpublished

TREATMENT impact on clinical evolution

Trypanocide Treatment of Women Infected with *Trypanosoma cruzi* and Its Effect on Preventing Congenital Chagas

Diana L. Fabbro¹, Emmaria Danesi², Veronica Olivera¹, Maria Olenka Codebó³, Susana Denner¹, Cecilia Heredia², Mirtha Streiger¹, Sergio Sosa-Estani^{2,3}*

Grupo	N	ACC (n)	ACC (%)	Tpo seguim. (años)	Edad ult. ECG (años)
Tratadas	51	1	1,96	20,6±10,6	44,8±11,6
No tratadas	39	6	15,38	17,9±8,9	47,6±10,5
Total	90	7			

PLOS | NEGLECTED TROPICAL DISEASES

RESEARCH ARTICLE

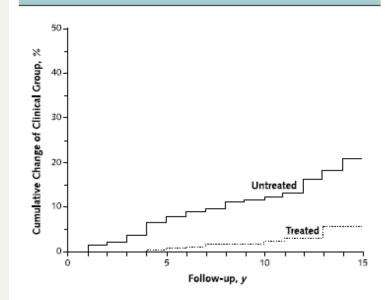
Evaluation of Parasiticide Treatment with Benznidazol in the Electrocardiographic, Clinical, and Serological Evolution of Chagas Disease

Abilio Augusto Fragata-Filho*, Francisco Faustino França, Claudia da Silva Fragata, Angela Maria Lourenço, Cristiane Castro Faccini, Cristiane Aparecida de Jesus Costa

Table 5. Logistic regression model. Dependent variable: the occurrence of clinical combined outcomes (heart failure, stroke and total mortality) and independent variables: treatment (BZ), follow-up, male, Caucasian and age in years.

<u>CI (95%) O.R.</u>					
	0.R.	Lower Limit	Upper limit	р	
TREATED BZ	0.330	0.115	0.947	0.039	
FOLLOW-UP	1.046	0.986	1.110	0.138	
MALE	2.264	0.878	5.834	0.091	
CAUCASIAN	3.025	0.679	13.480	0.147	
AGE	1.021	0.965	1.081	0.463	

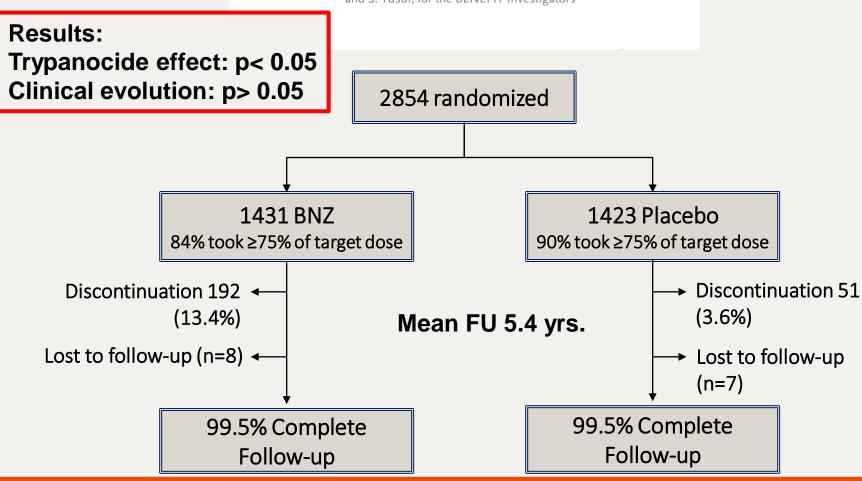
Table 6. Logistic regression model. Dependent variable: normal ECG maintenance and independent variables: treatment with BZ, follow-up, male, Caucasian and age in years.


<u>CI (95%) O.R.</u>					
	0.R.	Lower Limit	Upper limit	р	
TREATED BZ	5.7330	2.5396	12.9420	<0.0001	
FOLLOW UP	0.9381	0.8990	0.9789	0.0033	
MALE	0.9381	0.8990	0.9789	0.0033	
CAUCASIAN	0.9381	0.8990	0.9789	0.0033	
AGE	1.0190	0.9886	1.0503	0.2243	

Long-Term Cardiac Outcomes of Treating Chronic Chagas Disease with Benznidazole versus No Treatment

un anuunnzeu mai

Figure 2. Kaplan–Meier curves of cumulative percentage of patients who changed clinical group.



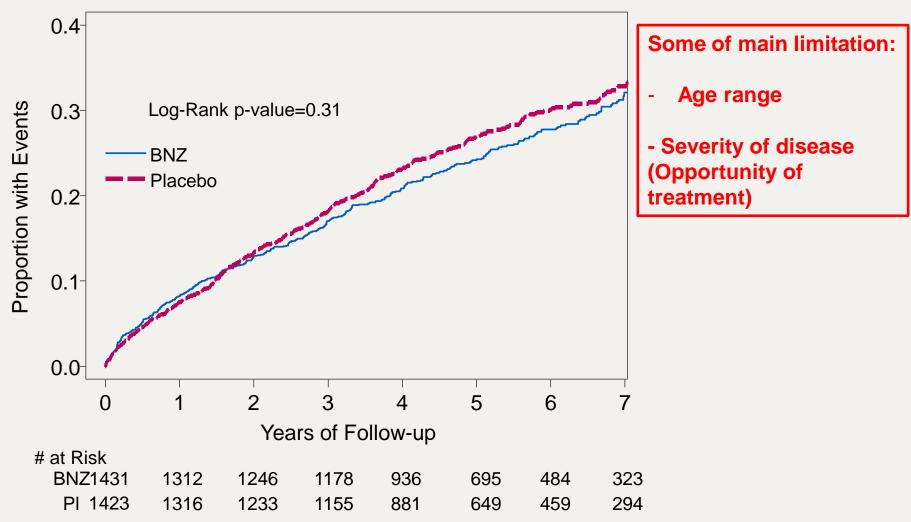
ORIGINAL ARTICLE

Randomized Trial of Benznidazole for Chronic Chagas' Cardiomyopathy

C.A. Morillo, J.A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, Jr., F. Rosas, E. Villena, R. Quiroz, R. Bonilla, C. Britto, F. Guhl, E. Velazquez, L. Bonilla, B. Meeks, P. Rao-Melacini, J. Pogue, A. Mattos, J. Lazdins, A. Rassi, S.J. Connolly, and S. Yusuf, for the BENEFIT Investigators*

ORIGINAL ARTICLE

Randomized Trial of Benznidazole for Chronic Chagas' Cardiomyopathy


C.A. Morillo, J.A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, Jr., F. Rosas,
E. Villena, R. Quiroz, R. Bonilla, C. Britto, F. Guhl, E. Velazquez, L. Bonilla,
B. Meeks, P. Rao-Melacini, J. Pogue, A. Mattos, J. Lazdins, A. Rassi, S.J. Connolly, and S. Yusuf, for the BENEFIT Investigators*

PCR Negativization

	No. of	Placebo	Benznidazole	i -	Interact	tion
	Patients (Pts with Events		h Events%)	nts%)		
Overall						
E.O.T.	918	33.5	66.2		F	
Year 2	673	35.3	55.4	-		
>5 Years	647	33.1	46.7			
Brazil						
E.O.T.	213	24.3	86.3			
Year 2	96	31.1	60.8		<0.0	01
>5 Years	141	27.4	35.3			
Argentina, Bolivia						
E.O.T.	388	28.6	73.0	-		
Year 2	332	34.1	62.9	-	–	
>5 Years	276	30.2	61.4	-	-	
Colombia, El Salvador						
E.O.T.	317	45.6	43.9			
Year 2	245	38.5	42.6			
>5 Years	230	40.2	35.4			
					T T T T T T	
				0.5 1.0 2.0	4.0 6.08.0	
				Placebo E	Benznidazole	

Odds Ratio

Primary Outcome - Overall

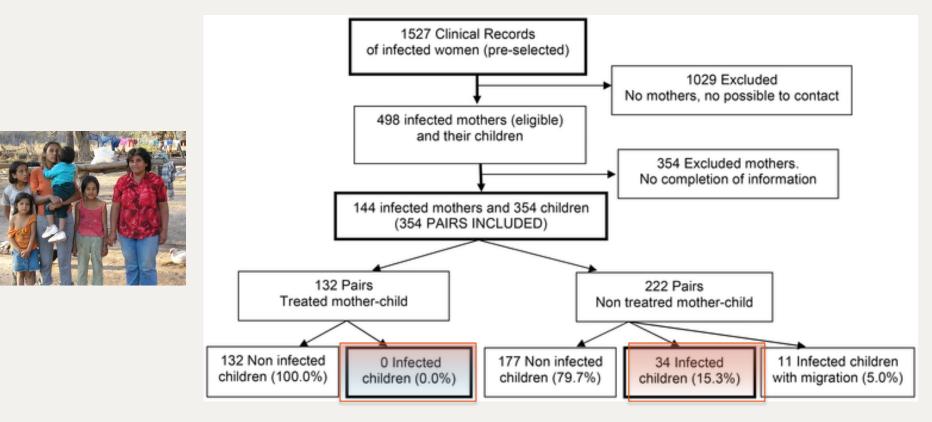
Randomized Trial of Benznidazole for Chronic Chagas' Cardiomyopathy

C.A. Morillo, J.A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, Jr., F. Rosas, E. Villena, R. Quiroz, R. Bonilla, C. Britto, F. Guhl, E. Velazquez, L. Bonilla, B. Meeks, P. Rao-Melacini, J. Pogue, A. Mattos, J. Lazdins, A. Rassi, S.J. Connolly, and S. Yusuf, for the BENEFIT Investigators*

Outcome	Benznidazole (N = 1431)	Placebo (N = 1423)	Hazard Ratio (95% CI)	P Value
	number (p	ercent)		
Primary composite outcome	394 (27.5)	414 (29.1)	0.93 (0.81–1.07)	0.31
Death	246 (17.2)	257 (18.1)	All results	_
Resuscitated cardiac arrest	10 (0.7)	17 (1.2)	0.58 (0.27–1.28)	_
Sustained ventricular tachyc <mark>ardia</mark>	33 (2.3)	41 (2.9)	0.80 (0.50–1.26)	but non
New or worsening heart failure	109 (7.6)	122 (8.6)	going =1.14)	
«Definitive, implantable cardio-	109 (7.6)	125 (8.8)	0.86 (0.66–1.11)	Statistical
patient-important	F ((2, 0)		in the same	significant
Stroke of transient is chemic Dutcomes vstemic embolism, Dutcomes on ary embolism	54 (3.8)	61 (4.3)	in the -1.26)	
	3 (0.2)	9 (0.6)	(0.33)	_
Hospitalization			right	
Any	358 (25.0)	397 <mark>(</mark> 27.9)		0.11
For cardiovascular causes	242 (16.9)	286 (20.1)	direction"	0.03
Death from cardiovascular causes	194 (13.6)	203 (14.3)	0.94 (0.77–1.15)	0.55
Death from or hospitalization for cardiovascular causes	348 (24.3)	380 (26.7)	0.89 (0.77–1.03)	0.13

N Engl J Med 2015;373:1295-306.

TREATMENT impact on transmission

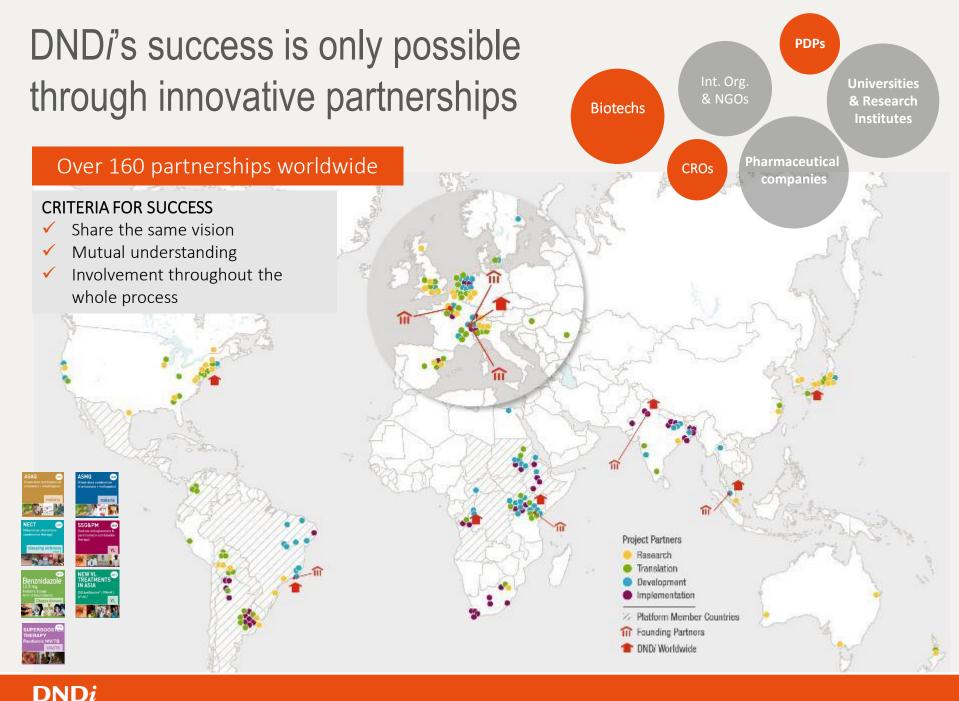


Trypanocide Treatment of Women Infected with *Trypanosoma cruzi* and Its Effect on Preventing Congenital Chagas

Diana L. Fabbro¹, Emmaria Danesi², Veronica Olivera¹, Maria Olenka Codebó³, Susana Denner¹, Cecilia Heredia², Mirtha Streiger¹, Sergio Sosa-Estani^{2,3}*

(RR congenital transmission in treated mothers = 0.04, IC:95%: 0.012 - 0.166; p<0.05)

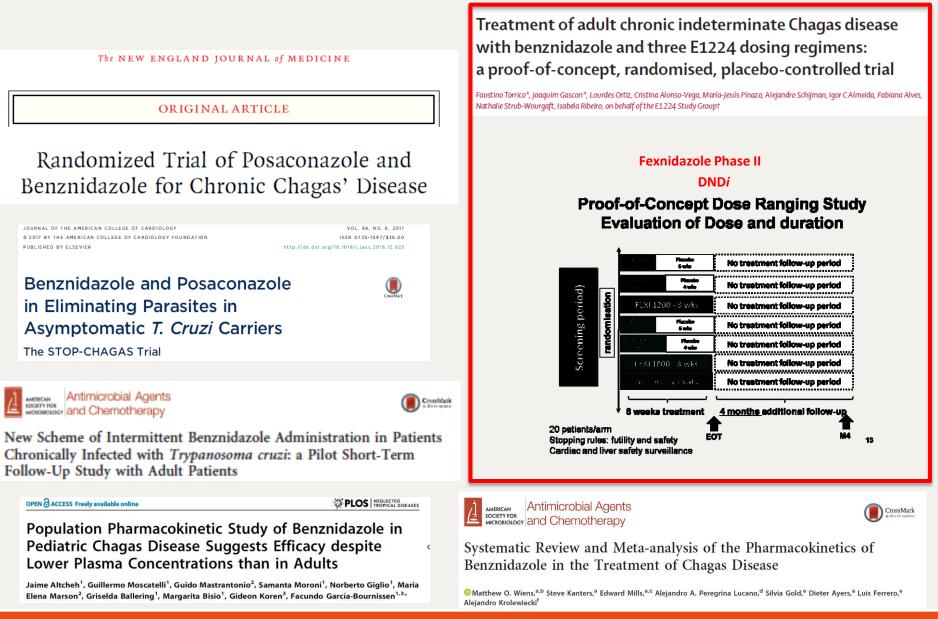
Fabbro D et al. PLoS Negl Trop Dis. 2014 Nov 20;8(11):e3312


Treatment of women before pregnancy Conclusions

- No case was detected among the offspring of mothers treated before pregnancy
- Specific treatment of young women is useful at the level of secondary prevention
- Etiological treatment in girls and women of childbearing age is helpful at the primary prevention level to avoid congenital *T. cruzi* transmission

TREATMENT new challenges

Drugs for Nonlasted Disasces initia


Chagas Disease – TPP 2015

	Acceptable	Ideal	
Target population	Chronic indeterminate	Chronic indeterminate and acute	
Geographic Distribution	All regions	All regions	
Efficacy	Non-inferior to benznidazole standard dose* in all parasitological areas	b different phases of disease (acute and	
Safety	Superior to benznidazole* in the frequency of definitive treatment discontinuations due to medical indication (clinical and laboratory)**	dical to medical indication (clinical and	
Contraindications	Pregnancy	No contraindications	
Precautions	No genotoxicity**; no pro-arrythmic potential	No genotoxicity; no teratogenicity; no pro- arrythmic potential	
nteractions No clinically significant interaction with anti-arrythmic and anticoagulant drugs No clinically significant in drugs		No clinically significant interaction with other drugs	
Presentation	Oral/Parenteral (short POC)*** Age-adapted	Oral Age-adapted	
Stability	3 years, climatic zone IV	5 years, climatic zone IV	
Dosing regimenOral - any duration Parenteral - <7 days		<30days	
Cost	Lowest possible	≤ current treatment cost	

DNDi Drugs for Neglected Dise

* As per WHO recommendation; ** No genotoxicity is a condition only for NCEs; *** Need for parenteral treatment for severe disease

CD Clinical Landscape

SUMMARY OF RECENT RCTs

- Posaconazole (monotherapy or in combination) and E1224 (monotherapy) were effective during treatment and relapsed after EOT (demonstrated by PCR Positive)
- Fexinidazole x 60 days (suspended for safety issues) was effective during treatment with sustained response (PCR negative 100%) at 12 months FUP
- Benznidazole was effective during treatment with sustained response (PCR negative ~ 80%) at 12 months FUP
- Pharmacokinetic studies suggest that doses of benzidazole could be reduced
- PCR proved useful for assessing treatment response to antitrypanosomal drugs

Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial

Faustino Torrico^{*}, Joaquim Gascon^{*}, Lourdes Ortiz, Cristina Alonso-Vega, María-Jesús Pinazo, Alejandro Schijman, Igor C Almeida, Fabiana Alves, Nathalie Strub-Wourgaft, Isabela Ribeiro, on behalf of the E1224 Study Group†

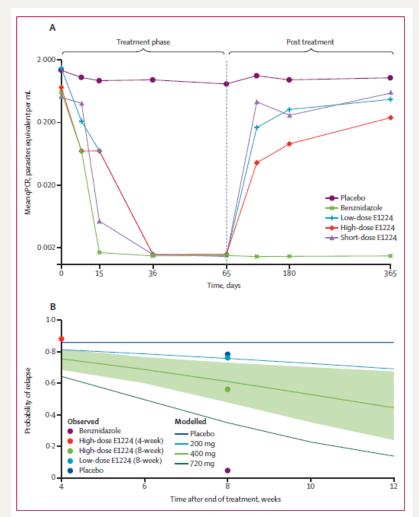
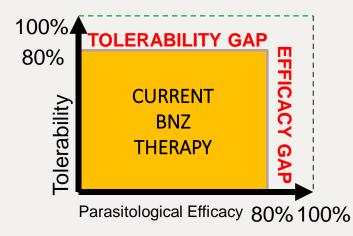
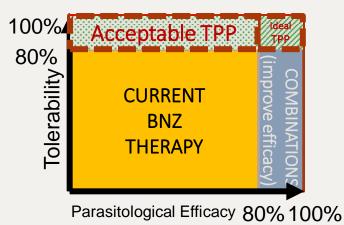
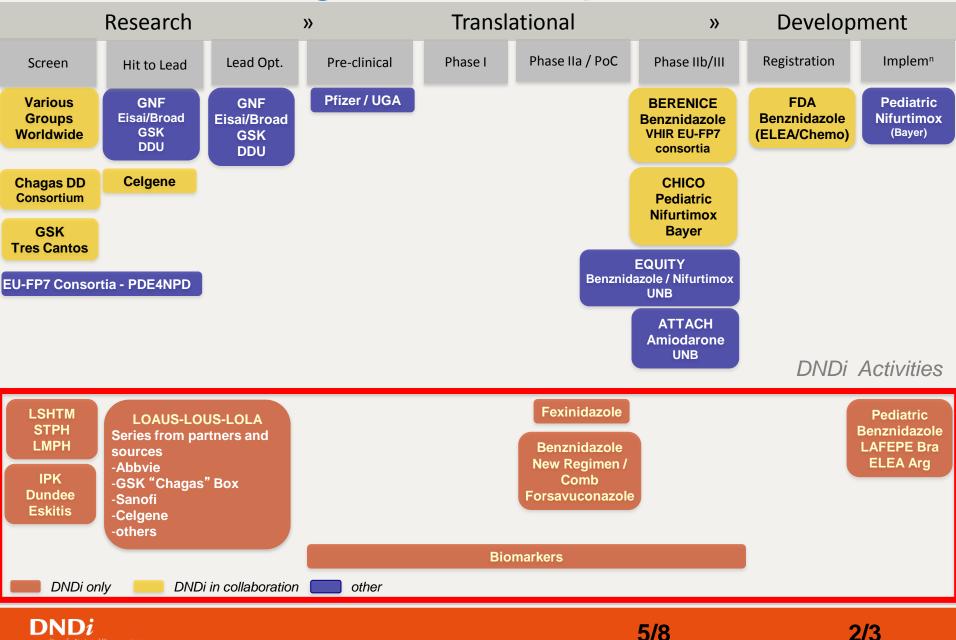



Figure 2: Sequential qPCR measurements of Trypanosoma cruzi DNA and pharmacokinetic-pharmacodynamic model of predicted probability of relapse


Strategies for Improving Efficacy and Tolerability

Current situation

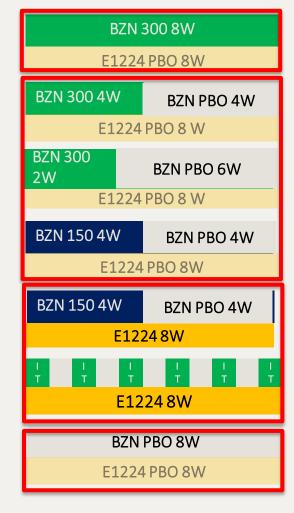

- BNZ is an effective drug
- ... but
- Efficacy gap
 - About 20% exhibit feilure on PCR at 12 months
- Tolerability gap
 - 15-20% do not complete treatment
 - Majority due to ADRs

Opportunities

- Reduce BNZ exposure
 - Improve tolerability while maintaining efficacy
 - *Does not address the efficacy gap
- Combination therapy
 - Improve efficacy while maintaining or improving tolerability
 - *May not address the tolerability gap

Chagas Landscape 2018

Partners CEADES ISGlobal INGEBI INP


randomisation

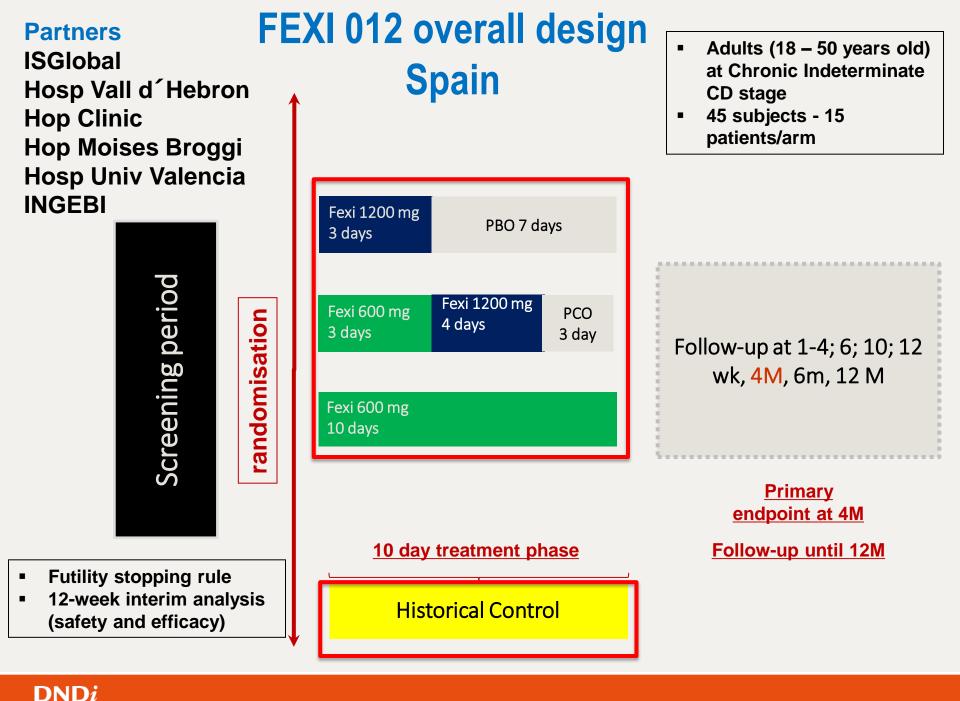
• Futility stopping rule

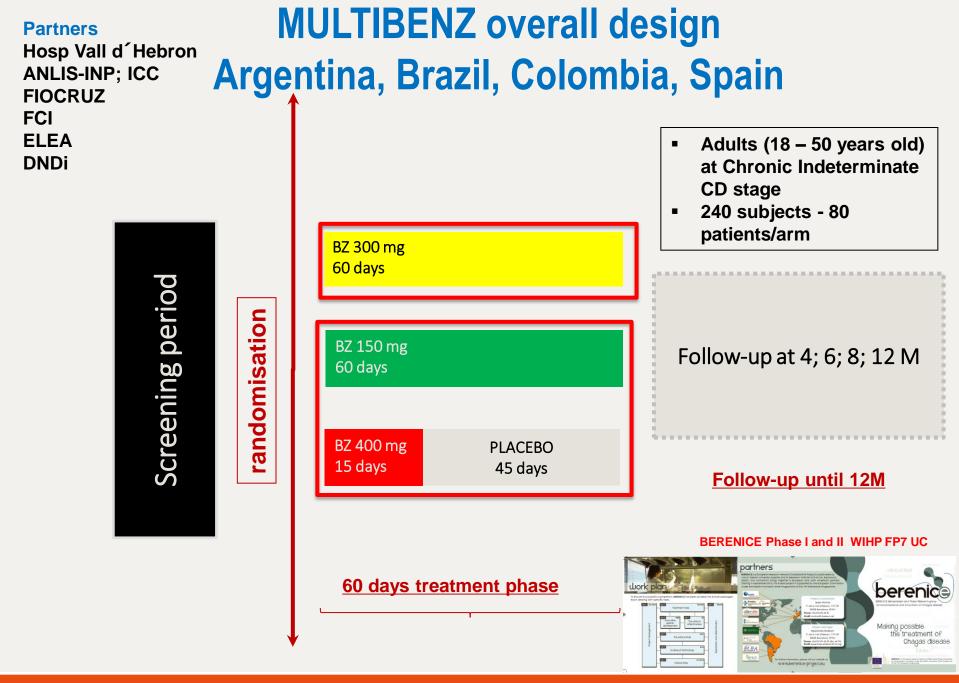
DND

 10 and 12-week interim analysis (safety and efficacy)

BENDITA overall design Bolivia

2 months treatment phase

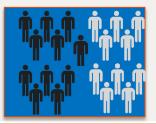

- Adults (18 50 years old) at Chronic Indeterminate CD stage
- 210 subjects 30 patients/arm


Follow-up at 10 wk, 12 wk, 4M, 6M, 12 M

> Primary endpoint at 6M

Follow-up until 12M

ClinicalTrials.gov Identifier: NCT03378661

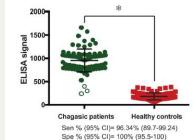

DNDi Drugs for Neglected Diseases in

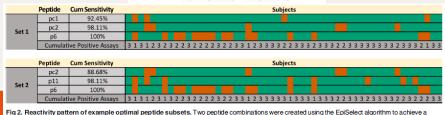

ClinicalTrials.gov Identifier: NCT03191162

Current alternatives under evaluation

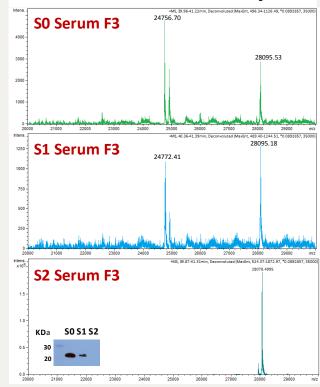
- Different old courses of benznidazole and nifurtimox (30 vs 60 days)
- New regimens of benznidazole in monotherapy (low dose and/or short regimen or intermittent): Next step, policy change ?
- NCE: New regimen of Bz in combination with E1224: Next step, Move to Phase 3 ?
- NCE: Fexinidazole, short course of treatment: Next step, Move to Phase 3 ?

Biomarkers to improve assessment of response of etilogical treatment

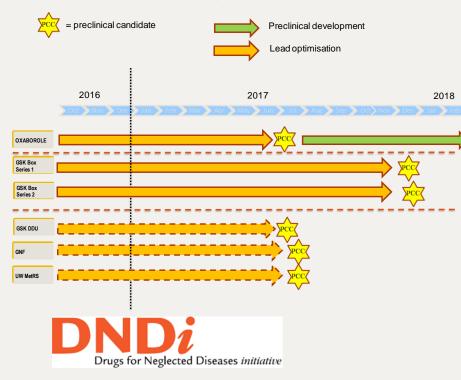

POTENTIAL BIOMARKER. SECONDARY SURROGATES NHEPACHA Pilot Study 2017-2018



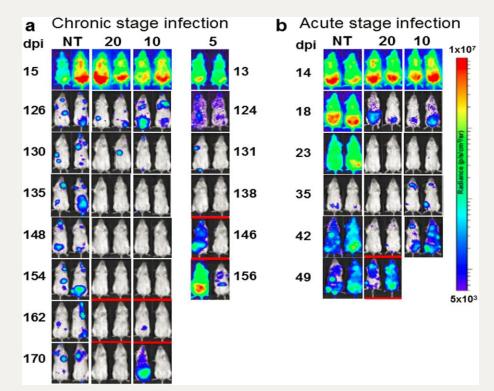
PARASITE ANTIGENS	Expression level in % (vs no <i>T. cruzi</i>)	% of decreasing after treatment	Elapsed time to decrease
CoML anti rTc24 ab	80 100	38 - 19 38 - 19 // 80*	6-24m/ 24-36m
KMP11	100	74-67	6m -24m
HSP70	100	74-50	6m-9m
F29	80	35– 62	6m - 48 m
Ab 3	NP	NP	NP


Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes

Juan Mucci^{1e}, Santiago J. Carmona^{1ee}, Romina Volcovich², Jaime Altcheh², Estefanía Bracamonte³, Jorge D. Marco³, Morten Nielsen^{1,4}, Carlos A. Buscaglia¹, Femán Agüero^{1 *}



Apo1 New markers through Proteomic platforms DND*i*-McGill University


Progress in developing NCEs for Chagas disease

SCIENTIFIC **REPORTS**

OPENNitroheterocyclic drugs cure
experimental Trypanosoma cruzi
infections more effectively in the
chronic stage than in the acute
stage

Amanda Fortes Francisco¹, Shiromani Jayawardhana¹, Michael D. Lewis¹, Karen L. White³, David M. Shackleford¹, Gong Chen³, Jessica Saunders³, Maria Osuna-Cabello⁺, Kevin D. Read⁴, Susan A. Charman³, Eric Chatelain² & John M. Kelly¹



OUTLOOK FOR 2020 BEYOND....

- NEW TRYPANOCIDE CHEMOTHERAPY
- TRYPANOCIDE CHEMOTHERAPY PLUS IMMUNOTHERAPY (?)
- TRYPANOCIDE CHEMOTHERAPY PLUS MODULATION OF PHYSIOPATHOGENESIS (?)
- TRYPANOCIDE CHEMOTHERAPY PLUS IMMUNOTHERAPY PLUS MODULATION OF PHYSIOPATHOGENESIS (?)

Chagas Access Plan: Current Outlook

Reduction in delays, dx confirmation:

from > 1 year to < 2 weeks

Available Medication: BZ 12,5; 50; 100 mg NFT 30; 120 mg

International Federation of Associations of People Affected by Chagas disease - FINDECHAGAS

http://www.youtube.com/watch?v=t3yVr8N3XmU

Acknowledgements

from the British people

Global Health Innovative Technology Fund

THANK YOU!!!

DND*i*

https://www.dndi.org/ ssosa@dndi.org

