LOPINAVIR/RITONAVIR 1:1 SUPER-BOOSTING OVERCOMES RIFAMPICIN INTERACTIONS IN CHILDREN

H RABIE¹, P DENTI², J LEE³, A COOVADIA⁵, S PILLAY⁶, A LIBERTY⁷, M MASANGO⁴, H MCILLERON², MF COTTON¹, M LALLEMANT³

¹ DEPARTMENT OF PEDIATRICS AND CHILD HEALTH AND CHILDREN'S INFECTIOUS CLINICAL RESEARCH UNIT UNIVERSITY OF STELLENBOSCH AND TYGERBERG HOSPITAL

² DIVISION OF CLINICAL PHARMACOLOGY, DEPARTMENT OF MEDICINE UNIVERSITY OF CAPE TOWN ³ DRUGS FOR NEGLECTED DISEASES INITIATIVE

⁴ SHANDUKANI RESEARCH WITS REPRODUCTIVE HEALTH AND HIV INSTITUTE UNIVERSITY OF THE WITWATERSRAND ⁵ EMPILWENI SERVICES AND RESEARCH UNIT RAHIMA MOOSA MOTHER AND CHILD HOSPITAL UNIVERSITY OF THE WITWATERSRAND

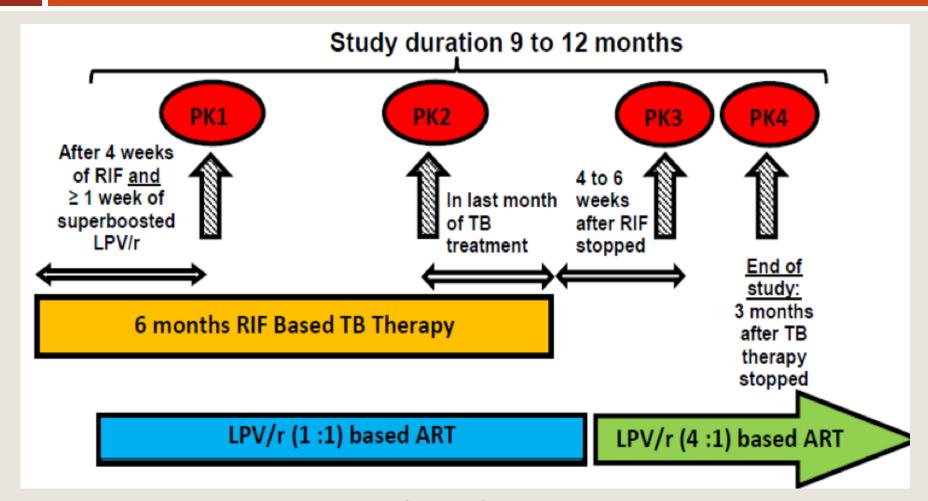
⁶ ENHANCING CARE FOUNDATION – DURBAN INTERNATIONAL CLINICAL RESEARCH WENTWORTH HOSPITAL ⁷ PERINATAL HIV RESEARCH UNIT UNIVERSITY OF THE WITWATERSRAND

Background

- □ LPV/r (4:1) preferred 1st line ARV regimen for infants
- □ TB is common in HIV-infected children
- □ Rifampicin (RIF) induces cytochrome (CYP) p450 3A4 and p-glycoprotein → ± 90% \$\frac{1}{2}\$LPV/r
- Doubling the LPV/r dose does not work in children
- "Superboosting"- i.e. increasing the dose of ritonavir (RTV) to obtain a 1:1 LPV:RTV ratio counteracts the RIF effect in children - BUT
 - Small studies
 - RIF dose increased in revised WHO guidelines

DNDi HIVPed001

- Multicenter, open label, non-randomized, study
- Primary Objective:
 - To determine whether the proportion of subjects achieving modelled LPV C_{0/morning trough} > 1mg/L during RTV superboosting (1:1 ratio) on RIFbased anti-TB treatment is inferior to LPV/r 4:1 without RIF
 - Non-inferiority threshold -10%
- Standard weight-band dosing
- Using liquid LPV/r and RTV



Sample size

- Calculated to provide at least 80% power to prove that LPV/r trough levels during superboosting for RIF therapy are not inferior to those after superboosting and RIF discontinuation (critical delta 10%)
- 90 evaluable subjects provide adequate power to test for non-inferiority

Study plan

Intensive pharmacokinetic visits: PK1, 2, and 3; PK4 trough levels only 6 samples: Hr 0 = (pre observed dose), then 1, 2, 4, 6, & 10 hours

Inclusion / exclusion criteria

Inclusion

- Confirmed HIV-1 infection
- Weight 3.0 kg -15.0 kg
- > 42 weeks post-conception age
- On or about to start LPV/r-based ART
- Clinically diagnosed TB requiring RIF in anti-TB therapy)
- Written informed consent

Exclusion

- Concomitant-potent enzyme-inducing/inhibiting drugs
- Need for anti-TB or ARVs other than from protocol
- Anticipated anti-TB treatment duration > 9 months

Screening, Enrollment and Follow-up

Screened 272

Enrolled 96

PK	Expected	Performed	Excluded	
1	93	92	0	254 Intensive PK
2	84	82 (Returned late for PK2 n=2)	1	performed 174 on RIF
3	80	80	0	

- Lost to follow-up N = 5
- Withdrew consent N = 6
- Death N=3
- Other N= 2

$$N = 16$$

Subjects characteristics (1)

	Enroll n=96	PK1 n=93 PK Data for 92	PK2 n=84 Data for 82	PK3 n=80 Data for 80
	10.0		22.2	25.0
*Age (months)	18.2 (9.6-26.8)	19.1 (10.4-27.6)	23.3 (15.2-34.4)	25.0 (16.7-34.3)
Female	52 (54%)			
Age <1y	30 (31%)	27 (29%)	15 (18%)	7 (9%)
**********	8.4	8.8	9.8	10.1
*Weight (kg)	(6.7-10.3)	(7.1-11.1)	(8.5-12.2)	(8.9-12.3)
*\A/A 7	-2.15	-2.00	-1.34	-1.37
*WAZ	(-3.361.19)	(-2.860.87)	(-2.150.43)	(-2.220.45)
****	-0.64	,	,	-0.26
*WHZ	(-1.610.31)			(-1.1- 0.52)
Clinical stage 4	60 (62%)			
OD 40/ *	19.5		27.3	
CD4% *	(11.6 - 25.7)		(20.5 - 32.6)	

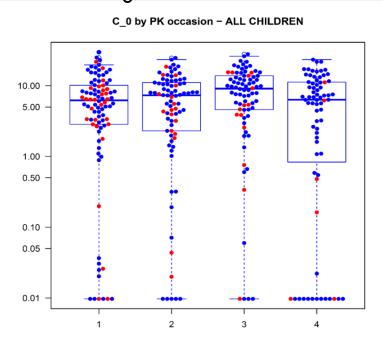
DNDi

Drugs for Neglected Diseases militative

Subjects characteristics (2)

- TB treatment started 1st: 70 (73%)
- < 3 Months ART Before TB: 12 (12.5%)
- TB therapy 4 drugs (including EMB): 77 (80%)
- ABC + 3TC: 91 (95%)

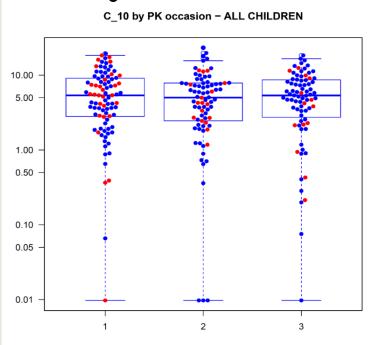
	Enroll n=96	PK1 n=93	PK2 n=84	PK3 n=80
*BSA	0.39 (0.34-0.46)	0.40 (0.35-0.47)	0.44 (0.40-0.52)	0.45 (0.41-0.52)
*LPV Dose mg/m²		322.9 (297.5 – 339.45)	309.86 287.21-330.51)	308.14 (286.37-329.12)
*RIF Dose mg/kg		12.45 (11.1-13.48)	12.63 (11.68-13.63)	
Viral load Log	5.7 (4.6-6.3)		2.1 (<1.6-2.9)	
Viral load <log 2.6<="" th=""><th>6 (6%)</th><th></th><th>67 (82%)</th><th></th></log>	6 (6%)		67 (82%)	


Model-based analysis

- PK1 was used to develop PK model
- The model was used to compare the data from PK2 (LPV/RTV superboosting with RIF) and PK3 (LPV/r normal dose)
 - Separate PK estimates for each visit
- Model-based simulations were used to compare exposures between superboosting or normal dose:
 - To account for diurnal variation overnight clearance was assumed 30% slower
 - The % of children with Cmin < 1mg/L was compared for each regimen</p>
 - The 95% confidence interval for this difference was checked for non-inferiority

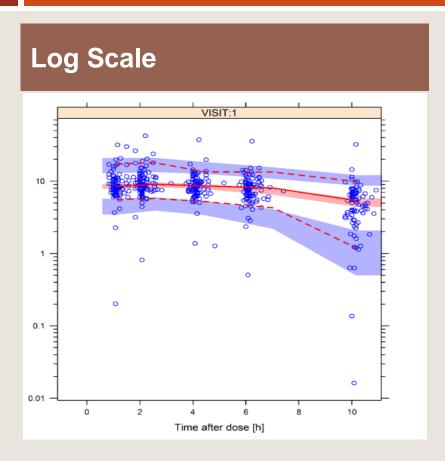
or Neglected Diseases initiative

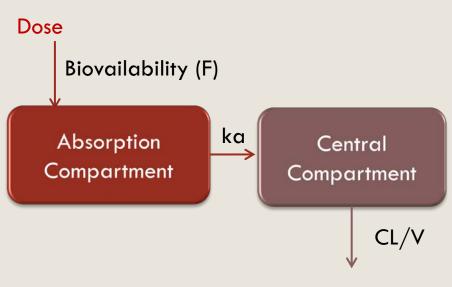
Observed LPV C₀ and C₁₀ levels


Dosing unobserved

Younger than 12 months

PK	Median (IQR) LPV C ₀ , mg/L	n
1	6.21 (2.86 – 10.1)	92
2	7.34 (2.43 – 11.0)	81
3	9.12 (4.60 – 11.4)	80
4	6.33 (0.957 - 11.2)	72

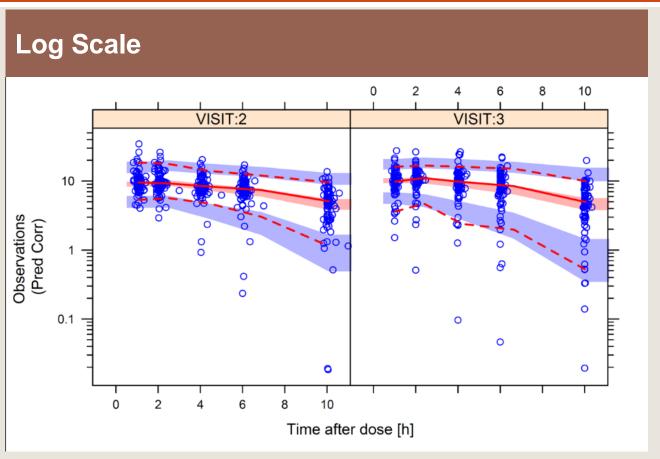

Dosing observed at clinic



PK	Median (IQR) LPV C _o , mg/L	n
1	5.38 (2.81 – 9.12)	91
2	5.01 (2.45 – 7.84)	81
3	5.35 (2.82 – 8.62)	80

Visual predictive check – Model PK 1

The percentiles are consistently within the 90% confidence intervals



Visual predictive check – Model PK 2-3

The percentiles are consistently within the 90% confidence intervals

5th & 95th centile modeled value

50th centile modeled value

Percentage modeled C₀ below target

- Superboosting % Cmin < 1 mg/L = 7.6% (0.4% -16.2%)</p>
- Standard dose % Cmin < 1 mg/L = 8.8% (0.6%- 19.8%)</p>
- □ Difference: -1.1% (-6.9% to 3.2%)
- The 10% delta threshold is outside the 95% confidence interval for the difference, confirming non-inferiority

Adverse events and safety

- 29 Serious adverse events
 - 3 deaths
 - □ 16 infections (7 respiratory tract infections)
 - 1 obstructive jaundice (temporary discontinuation of therapy all reintroduced)
 - 4 neutropenia (no therapy changes required)
 - 1 type 1 Diabetes (islet cell antibody positive)
- No ECG abnormalities requiring therapy change

Hepatic enzymes monitoring

	Baseline	PK1	PK2	PK3	Exit
ALT (U/L) Median (IQR)	25.0 (18.0 - 40.0)	25.0 (19.0 - 32.0)	26.0 (19.5 - 35.5)		20.0 (16.0 - 26.0)
Normal	68 (72%)	79 (86%)	62 (78%)	72 (91%)	
ALT Gr 1 1.5-2.5 ULN	21 (22%)	9 (10%)	13 (16%)	6 (8%)	
ALT Gr 2 2.6-5 ULN	6 (6%)	4 (4%)	5 (6%)		

Virologic response

- At PK 2
 - □ 69 (84%) < Log 3
 - □ 67 (82%) < log 2.6
- 22 resistance test performed
 - 7 No mutations
 - No lopinavir resistance
 - M184V in 10/15 children
 - NNRTI mutations seen in 10/15 children (9/10 significant)

Discussion and conclusion

- LPV trough levels on superboosting were NOT inferior to those on standard LPV/r without RIF
- Viral suppression <400 copies was comparable to published cohort data
 - No major LPV/r resistance documented
 - 9 of 15 children with resistance had significant NNRTI resistance
- Logistical complexity and tolerability may remain obstacles –
 Mothers assessment and children reactions do not necessarily match
- Taste masked LPV/r granules and RTV powder may help

Acknowledgements

- South African Department of Health and Provincial Departments of Health Western Cape, Gauteng, Kwa-Zulu Natal
- DNDi team: Jackie Crisp
- KIDCRU: Els Dobbels, Peter Zuidewind, Anita Janse Van Rensburg, Wilma Orange, Kurt Smit, Catherine Andrea
- Shandukani WHRI: Mhleli Masanga, Lee Fairlie, Matshediso Moilwa
- PHRU: Avy Violari, Haseena Cassim, Stacy-lee Sigamoney, Serena Sukhari
- Empilweni Services and Research Unit: Renate Strehlau, Faeezah
 Patel, Francoise Pinillos Saer, Shini Moaisi
- Enhancing Care Foundation: Sajeeda Mawlana, Rosie Mngqibisa,
 Moherndran Archary, Rejoice Sikhosana
- UCT Pharmacology: Jennifer Norman, Ghakiema Jacobs, Lubbe Wiesner
- PHPT Data Team: Nirattiya Jaisieng, Luc Decker, Suwalai Chalermpantmetagul

