Drug discovery against kinetoplastid diseases: the DND*i* perspective

COST Action CM 1307 meeting Belgrade, 27 October 2015

FC

NFGLEC

PATIENTS

Jean-Robert loset

OUTLINE

DNDi's Model

R&D landscape and portofolio

DNDi's Discovery strategy

Selected discovery approaches: lessons learnt

Identifying and addressing the challenges

Achievements

DNDi's Model

THE HISTORY OF DNDi

In the 1990s and after, MSF documented in the field that patients had no treatments for certain neglected - diseases.

MSF used funding from the Nobel Prize and created the Drugs for Neglected Diseases working group, which then led to DNDi in 2003.

 $\mathsf{DND}i$

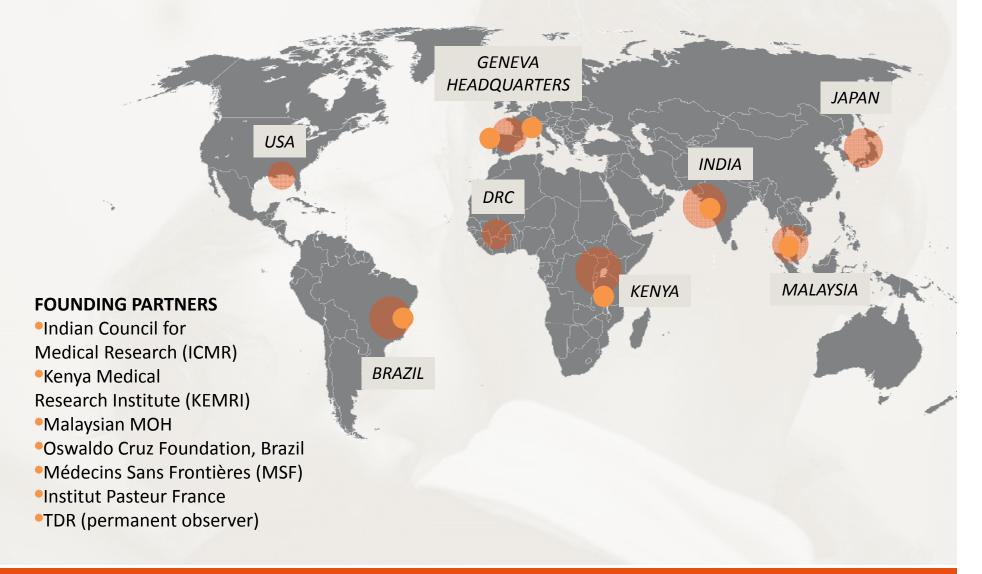
DNDi Nutshell - From bench to bedside

VISION & OBJECTIVES

DNDi VISION

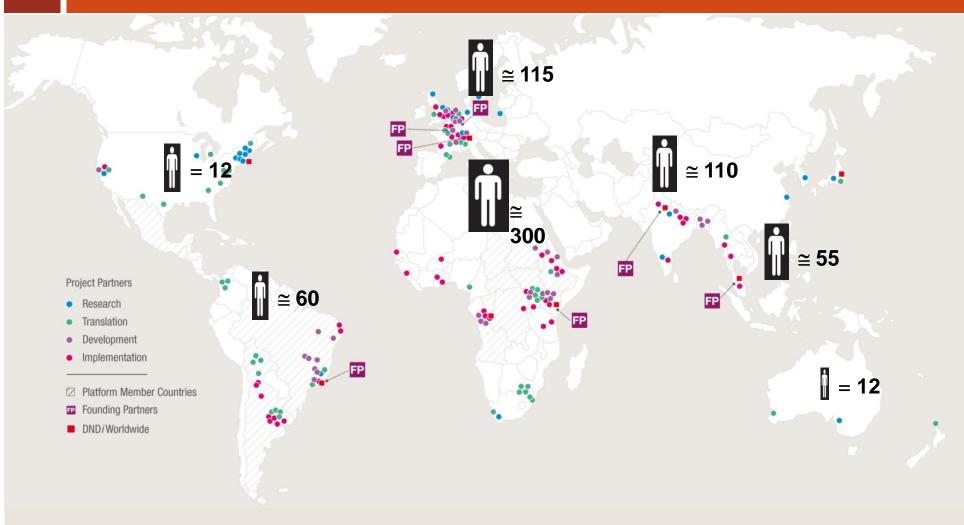
A collaborative, patients' needs-driven, virtual, non-profit drug R&D organisation to develop new treatments against the most neglected diseases.

DNDi OBJECTIVES


- Deliver 11 to 13 new treatments by 2018 for Sleeping sickness, Chagas disease, Leishmaniasis, Malaria, Paediatric HIV and specific Filarial infections
- Establish a robust pipeline for future needs
- Use and strengthen existing capacity in disease-endemic countries
- Raise awareness and advocate for increased public leadership

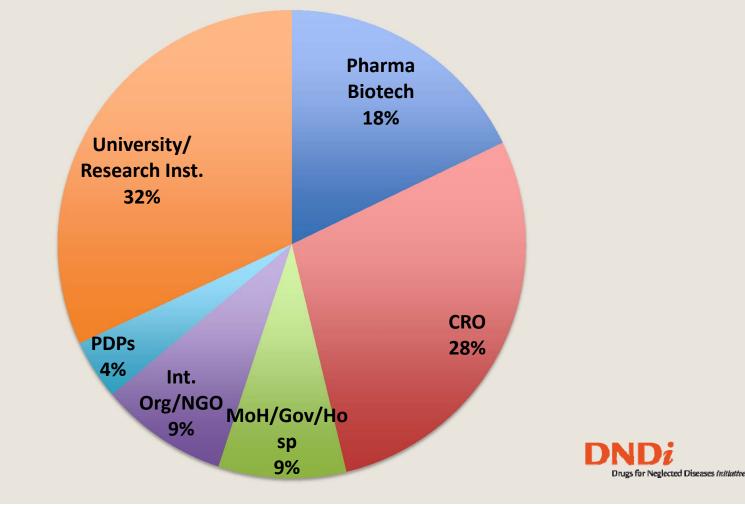
DNDi Nutshell - From bench to bedside

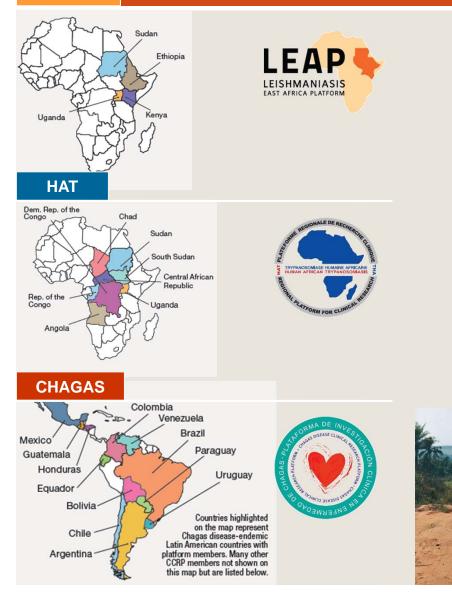
DNDi: PARTNERS & GLOBAL PRESENCE



DNDi Drugs for Neglected Diseases in

DNDi Nutshell - From bench to bedside


Dedicated Teams Worldwide Over 660 People Committed to DND*i's* Vision


A Global Network to Leverage Resources More Than 100 R&D Partners

Balance of public and private partnerships worldwide

Utilizing and Strengthening Research Capacities in Disease-Endemic Countries

VL

Major Role of Regional Disease Platforms:

- Defining patients' needs and target product profile (TPP)
- Strengthening local capacities
- Conducting clinical trials (Phase II/III studies)
- Facilitating registration
- Accelerating implementation of new treatments (Phase IV & pharmacovigilance studies)

Overcoming Challenges in the Field Thanks to Our Partners in Endemic Countries

In 10 years: >33,000 patients enrolled in >20 clinical studies in five disease areas

R&D landscape and portofolio

Neglected Diseases: Treatment Limitations 10 Years Ago

Melarsoprol

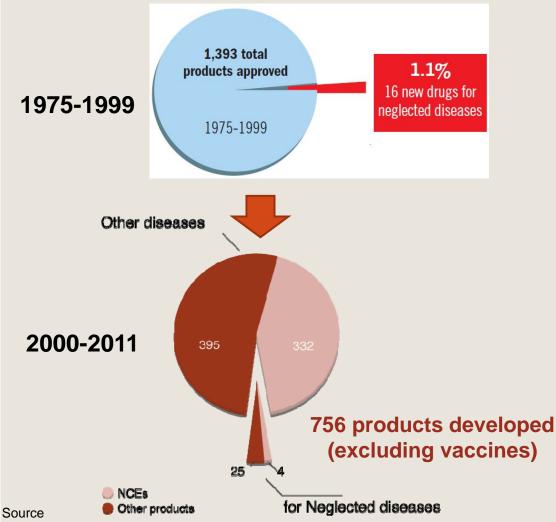
Eflornithine

Ineffective (resistance)

Toxic

Expensive

Painful when delivered

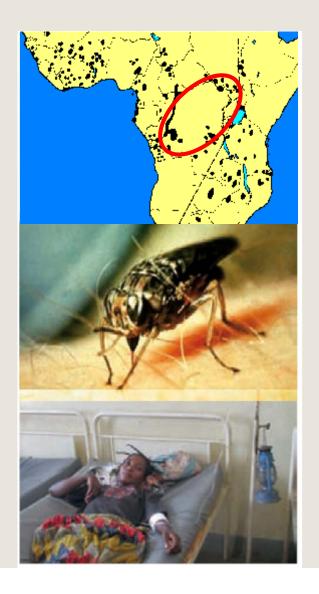

Difficult to use

- Not registered in endemic regions
- Restricted by patents

We Need Safe, Effective, Easy-to-Use Drugs

Fatal Imbalance Remains Despite Progress Over A Decade

Fatal Imbalance: The Crisis in Research and Development for Neglected Diseases, MSF, 2001 'The drug and vaccine landscape for neglected diseases (2000-2011): a systematic assessment' Pedrique B et al. Lancet, Oct 2013

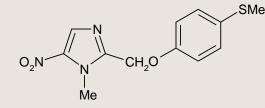

- 10% of R&D dedicated to illnesses that affect 90% of global disease burden ('10/90 gap')
- **3.8%** of new products for neglected diseases (reformulations, combinations)
- **1.2%** of NCEs for neglected diseases
- Only **1.4%** clinical trials
- Only 1% of global health investment for neglected diseases*

*Source '

Mapping of available health research and development data: what's there, what's missing, and what role is there for a global observatory?' Rottingen et al. Lancet, May 2013

Human African Trypanosomiasis (HAT) or Sleeping Sickness

- 36 countries at risk in sub-Saharan Africa;
- Trypanosoma b. gambiense and rhodesiense
- **Transmitted by the tsetse fly**
- estimated current cases: 20,000
- Difficult to diagnose; many patients go undiagnosed until late stage of disease
- Fatal if untreated
- **7** countries bear 97% cases (RDC = 2/3)
- Current drugs: melarsoprol, NECT
- Needs: a safe, effective, short-course and orally administered stage 2 treatment


By 2018? New Oral Treatments and Rapid Diagnostic Tests at Village Level

Fexinidazole

- A 'rediscovered' new chemical entity through compound mining
- Potential oral treatment
- Phase II/III in DRC and CAR

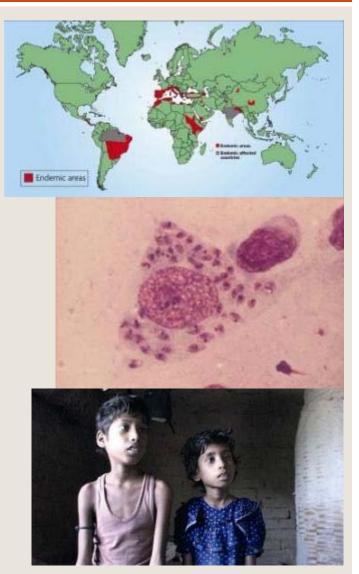
Oxaborole SCYX-7158

- New chemical entity from the Lead Optimization programme
- Potential oral treatment with a single pill
- Phase I completed; Entering Phase II/III soon

In partnership with Sanofi

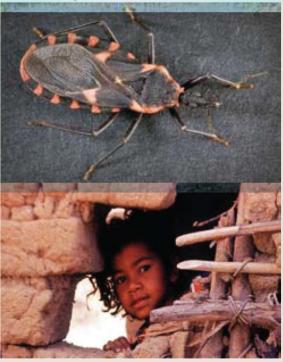
Sleeping Sickness: From Unacceptable To Better, Towards Tools for Elimination

Since 2009: Oral treatment & rapid diagnostic test

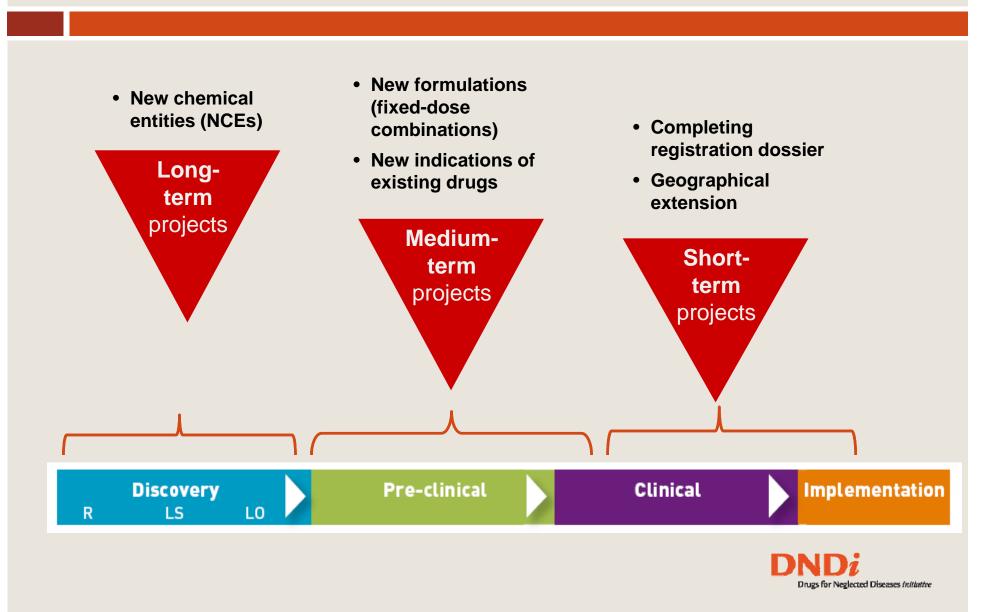

2018?

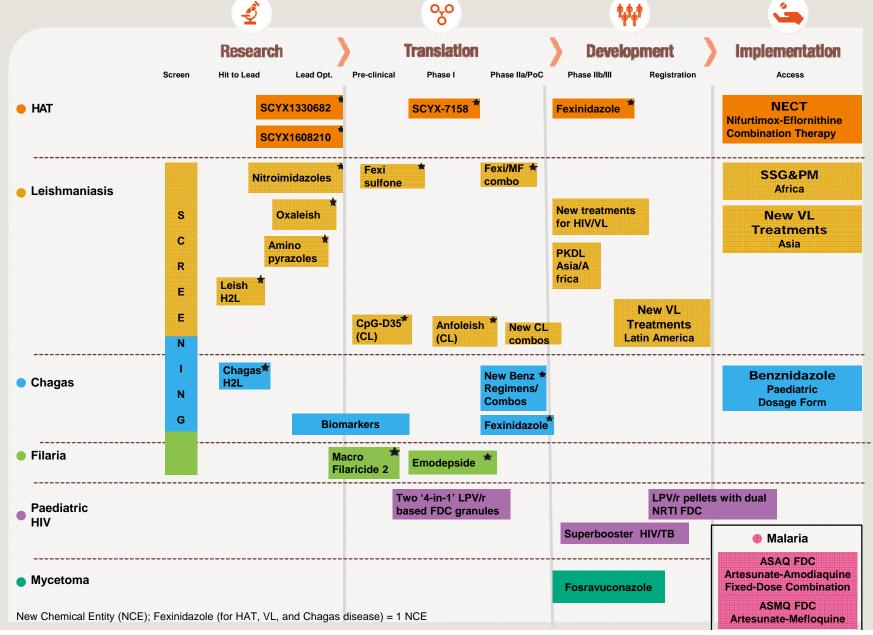
NECT **15 years ago:** Eflornithine Melarsoprol

Leishmaniasis


- 200 million at risk worldwide (in 70 countries but 90% in 5 countries)
- **500,000** cases in total with 51,000 deaths/year
- Leishmania donovani
- Transmitted by the sandflies
- 2 types of leishmaniasis:
 - Visceral (VL): fatal without treatment
 - Cutaneous (CL): has a spectrum of presentations; typically with self-healing or chronic lesions on the skin
 - Current drugs: antimonials, Amphotericin B, AmBisome®, miltefosine, paromomycin
- Needs: oral, safe, effective, low-cost and short-course treatment

Chagas Disease


- 100 million at risk in Latin America
- 8 millions cases with 14'000 deaths/yea
- Trypanosoma cruzi
- Kills more people in region than malaria
- Patient number growing in non-endemic countries
- Transmitted by 'kissing bug', blood transfusion, organ transplantation, as congenitally or orally
- Majority of patients undiagnosed until late stage
- Current drugs: benznidazole, nifurtimox
 Needs:
 - paediatric drug (benznidazole)
 - a new oral drug for early chronic stage


DND*i* Portfolio-Building Model

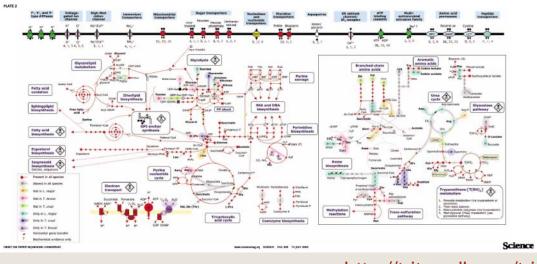
Address Immediate Patient Needs & Deliver Innovative Medicines

DND*i* Portfolio June 2015

6 new treatments since 2003

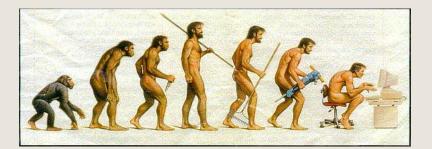
DND's Discovery strategy

An evolutive process



2003-2005: status of knowledge

- genome sequenced by TriTryp consortium (2005)
- little know about target validation -> lack of translation
- Whole cell (phenotypic) assay in place at low throughput
- Little known about kinetoplastid biology relevant to disease
- few drugs used in the clinics (MoA unknown, empirical use)



CREDIT: THE TRITRYP SEQUENCING CONSORTIUM http://tritrypdb.org/tritrypdb/

Discovery @ DND*i*: an evolution process

- Started with academia/parasitology partners (networking)
- From individual projects
- Selection on opportunistic, scientific-based criteria
- Little H2L/LO capactity and expertise (project based)
- small non-proprietary libraries (little related knowledge)
- Low screening capacity for all 3 protozoa

Adapt to changing R&D landscape

Discovery at DND*i*: 2005-2008 lessons learnt

- success is the exception (fexinidazole)
- mostly library-based/chemistry-driven projects
 - individual projects
 - little known about developability of hits/hit series
 - little expertise and support (ADMET, PK, toxicity)
- in vitro to in vivo translation are we using pathology relevant models? Are we too stingent/too loose? Has chemistry to be questioned ?
- literature mining lack of reproducibility
- chemical collections more opportunistic than rational selection
- Screening limited screening capacity: few hundred cpd/month

Discovery at DND*i*: since 2008

increase phenotypic screening capacity

strategic partnerships with **Eskitis** (HAT HTS assay development), **Institut Pasteur Korea** (VL and Chagas HCS development) and **University of Dundee** HCS assay development)

review strategy re selection of compounds

selection of compound libraries and partnerships (focus on Pharmas)

•invest in fully integrated Lead Optimization consortia supported by DMPK/parasitology

delink funding from research teams and series

develop of guiding/decisional tools

Target Product Profiles, discovery cascades

• invest in better understanding of assay models

understand biology (drugs/clinical candidates as benmarkers, in vitro and in vivo -> translation, PK/PD, integrate secondary assays (HAT, VL, Chagas) into screening cascade

Research

dected Diseases initiatin

Selection of compounds for screening

Me

1. Literature mining (1-100)

scientific litt and patent search (low hanging fruit)

Jennings, FW, Urquhart GM, The use of the 2 substituted 5-nitroimidazole, Fexinidazole (Hoe 239) in the treatment of chronic T. brucei infections in mice. Z Parasitenkd. 1983;69 (5): 577-81

2. Drug repurposing (100-1'000)

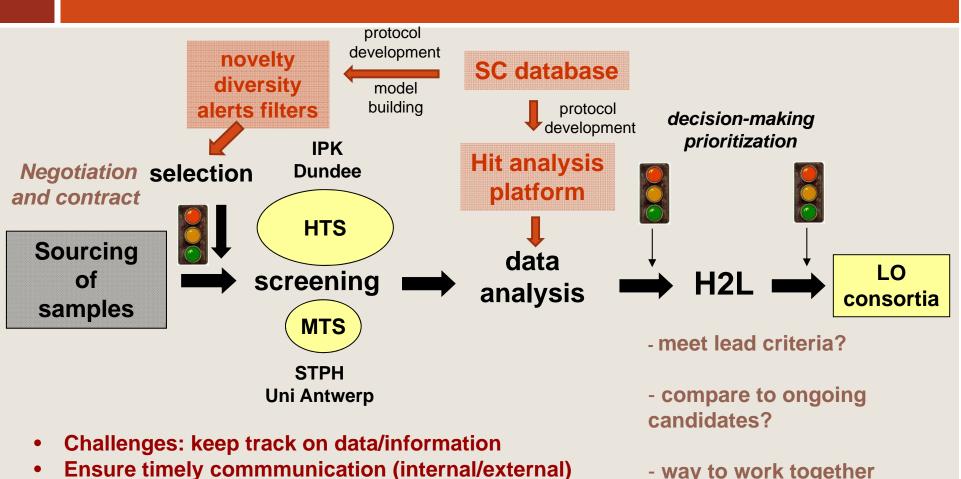
drug candidates and approved drugs (preclinical to registration)

3. ADME/PK biased sets (1-3K)

e.g. bioavailability, half-life, distribution, BBB...

4. Diversity screening core (10-150K) to larger decks (+500K)

lead-likeness/diversity algorithms (and other filters)


5. Specific sets: anti-infective classes, orthology (100-1000) including target related and class related

6. Scaffold-hopping/analog mining (10-100) non-proprietary/published hits as templates

7. Others: NP, putative protozoan targets, activity predictive models, ...

screening/early Discovery - Process Research

Deal with more data/ more partners

- way to work together (new partners)?

coordination of partnerships and screening centers

Ŷ

Discovery - Tools

Target Product Profiles (TPPs)

- Defined in consultation with stakeholders:
 - Patients, Physicians, Regulators, Public health agencies

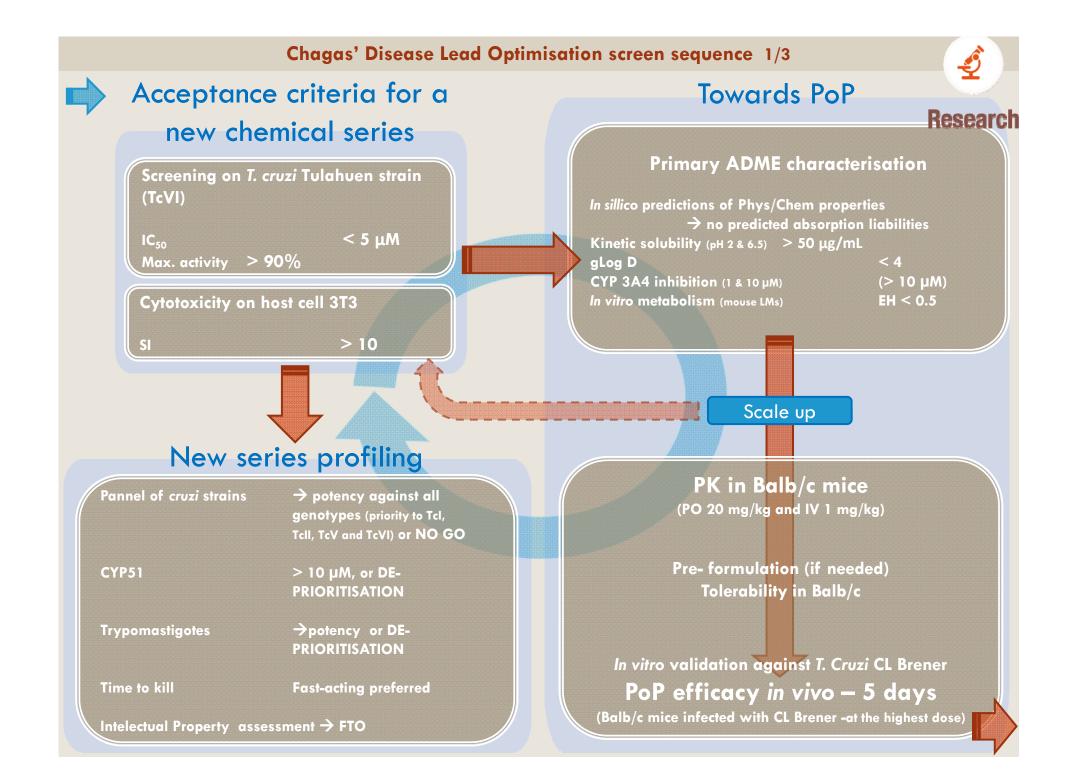
Drug Discovery manuals and screening cascades

• Objective values for:

- Hits, Leads, Optimized leads, Drug candidates

• Surrogate markers to support the Discovery Manuals

Data Management


• Ensures rapid dissemination of data to partners (ScienceCloud)

the TPP as a R&D guide the example of Chagas Disease

		กธรธสเบ		
	Acceptable	Ideal		
Target population	Chronic	Chronic and Acute (Reactivations)		
Strains	Tcl, Tcll, TcV and TcVI (according to new 2009 classification)	All according to new classification (2009)*		
Distribution	All areas	All areas		
Adult/children	Adult	All		
Clinical efficacy	Non inferior to benznidazole in all endemic regions (parasitological)	Superiority to benznidazole to different phases of disease (acute and chronic) (parasitological)		
Safety	Superiority to benznidazole ** 3 CE plus 2 standard LE or ECG during treatment	Superiority to benznidazole or nifurtimox No CE or LE or ECG needed during treatment		
Activity against resistant strains	Not necessary	Active against nitrofuran- and nitroimidazole- resistant <i>T. cruzi</i> strains		
Contraindications	Pregnancy/lactation	None		
Precautions	No genotoxicity; No pro-arrythmic potential	No genotoxicity; No teratogenicity; No negative inotropic effect; ; No pro-arrythmic potential		
Interactions	No clinically significant interaction with anti-hypertensive, anti-arrythmic and anticoagulants drugs	None		
Presentation	Oral	Oral		
Stability	3 years, climatic zone IV	5 years, climatic zone IV		
Dosing regimen	Comparable to systemic antifungal treatments	Once daily/ 30days		

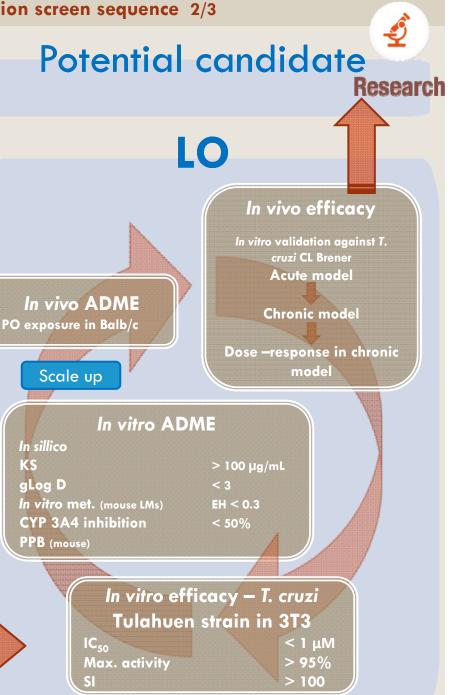
Chagas' Disease Lead Optimisation screen sequence 2/3

Further profiling for a successful PoP

ADME

Plasma stability (mouse, rat & human) Plasma protein binding (mouse, rat & human) Permeability (Caco -2)

Safety & Toxicology


Panel of mammalian cells for cytotoxicity

CYP screening	> 10 μM
hERG	> 30 μM
Mini AMES	negative
<i>In vitro</i> Micronucleus	negative
CEREP profiling	
Preliminary CV test in rat	negative

Entrance in LO

Potency

Reversibility in T. cruzi Tulahuen assay

Selected discovery approaches: lessons learnt

Selection of compounds for screening

Me

1. Literature mining (1-100)

scientific litt and patent search (low hanging fruit)

Jennings, FW, Urquhart GM, The use of the 2 substituted 5-nitroimidazole, Fexinidazole (Hoe 239) in the treatment of chronic T. brucei infections in mice. Z Parasitenkd. 1983;69 (5): 577-81

2. Drug repurposing (100-1'000)

drug candidates and approved drugs (preclinical to registration)

3. ADME/PK biased sets (1-3K)

e.g. bioavailability, half-life, distribution, BBB...

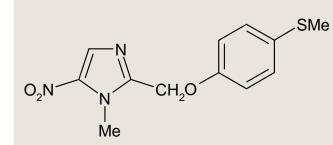
4. Diversity screening core (10-150K) to larger decks (+500K)

lead-likeness/diversity algorithms (and other filters)

5. Specific sets: anti-infective classes, orthology (100-1000) including target related and class related

6. Scaffold-hopping/analog mining (10-100) non-proprietary/published hits as templates

7. Others: NP, putative protozoan targets, activity predictive models, ...


Fexinidazole: data mining for low-hanging fruit was worth the effort!

DNDi's First NCE to Reach Phase II/III Clinical Study (in DRC)

Research

Ŷ

<u>Objective</u>: Drug candidate to become an oral, short course treatment for stage 1+ 2 sleeping sickness treatment, caused by either *T.b. gambiense* or *T.b. rhodesiense*

- Literature review of nitroimidazoles as a class
- Sourcing and screening of > 500 nitroimidazoles from various sources
- Identification of fexinidazole as drug candidate
- Preclinical development including ADME-PK, GLPtoxicology and safety pharmacology
- Phase I clinical trials in Paris completed
- Agreement to co-develop with Sanofi
- Phase II/III with Sanofi in DRC and CAR

Jennings, FW, Urquhart GM, The use of the 2 substituted 5-nitroimidazole, Fexinidazole (Hoe 239) In the treatment of chronic T. brucei infections in mice. Z Parasitenkd. 1983;69 (5): 577-81

Drug repurposing: attractive but ...

- Screening of marketed drugs from commercially available collections
- Screening of (terminated) drug candidates from Pharmaceutical companies

Outcome:

several candidates identified

- antidepressants for HAT
- antihistaminics/antiallergics
 (anti-H1 inh.) for Chagas
- clofazimine and disulfiram for VL
- auranofin for HAT/VL/Chagas
- disulfiram for VL...

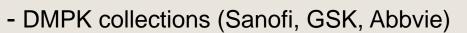
Drug ID	°L.don axen.	^b L. don. intracell	°Cytotox. mac.inf.	^d Cytotox. PMM	۴SI	Indication	Chemical Class	Mode of Action
Auranofin	0.11	>1.47	4.42	N/A	40	Antirheumatic	Gold agent	kappaB kinase and thioredoxin reductase inhibitor
Amphotericin B	0.34	0.31	32.4	22.39	95	Antifungal/ Antiprotozoal	Polyenes	Membrane cell sterol binder
Ciclopirox olamine	1.64	9.09	20.3	20.27	12	Antifungal	Pyridinones	Polyvalent metal cation chelator
Tolnaftate	4.33	50.1	97.6	N/A	> 23	Antifungal	Thiocarbamates	Squalene epoxidase inhibitor
Artesunate	0.35	>7.8	7.8	N/A	> 22	Antimalarial	Endoperoxides	Unknown, acting via reactive oxygen radical species
Rifamycin SV	1.5	>13.87	41.62	N/A	28	Antibacterial/ Antituberculotic	Rifamycins	bacterial DNA-dependent RNA synthesis inhibitor
Rifampicin	1.53	>36.45	36.5	N/A	> 24	Antibacterial/ Antituberculotic	Rifamycins	Bacterial DNA-dependent RNA synthesis inhibitor
Nitrofurantoine	2.12	>41.81	125.44	N/A	59	Antibacterial	Nitroheterocycles	Oxygen-insensitive NADPH nitroreductase
Nifurtimox	2.76	20.68	34.8	15.7	13	Antibacterial/ Antiprotozoal	Nitroheterocycles	Induction of oxidative stress in target cells
Troglitazone	4.26	>67.94	68	N/A	> 16	Antidiabetic/ Antinflammatory	Thiazolidinediones	Nuclear receptor (PPAR) binder
Clofazimine	22.39	0.95	6.34	10.65	10	Antibacterial/ Antituberculotic	Riminophenazines	Mycobacterial DNA binder, Redox cycling, Cell membrane destabilizer, Acid sphingomyelinase inhibitor
Nifuroxazide	2.83	>10.86	36.2	N/A	13	Antibacterial	Nitroheterocycles	Lipoamide dehydrogenase inhibition
Tipranavir	1.64	>49.78	50	N/A	> 30	Antiviral/ Antiretroviral	Protease Inhibitors	HIV protease inhibitor
Lonidamine	8.66	>93.41	93.4	N/A	> 11	Anticancer	Indazoles	Glycolysis inhibition via hexokinase activation

Kaiser M, Mäser P, Tadoori LP, Ioset J-R, Brun R (2015) Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS ONE 10(8): e0135556. doi:10.1371/journal.pone.0135556

BUT

Key issues preventing further development

- unsuitable drug profile: lack of oral bioavailability, toxicity (safety marging)
- potency disconnect between primary (nM) and ND targeted (uM) indications


target drug classes: the added value of working with annotations

- Track record in R&D -> reduced attrition rate •
- Access to analogs, data and expertise from Pharma •
- Proceed quickly to PoC of in vivo efficacy •
 - Oxaboroles (Anacor) -> SCYX-7158 for HAT
 - Nitroimidazoles (TB Alliance) -> VL-2098 and back-ups for VL
 - Other classes related to anti-infectives/oncology (macrolides, ...)

Bioinformatics

orthologs of

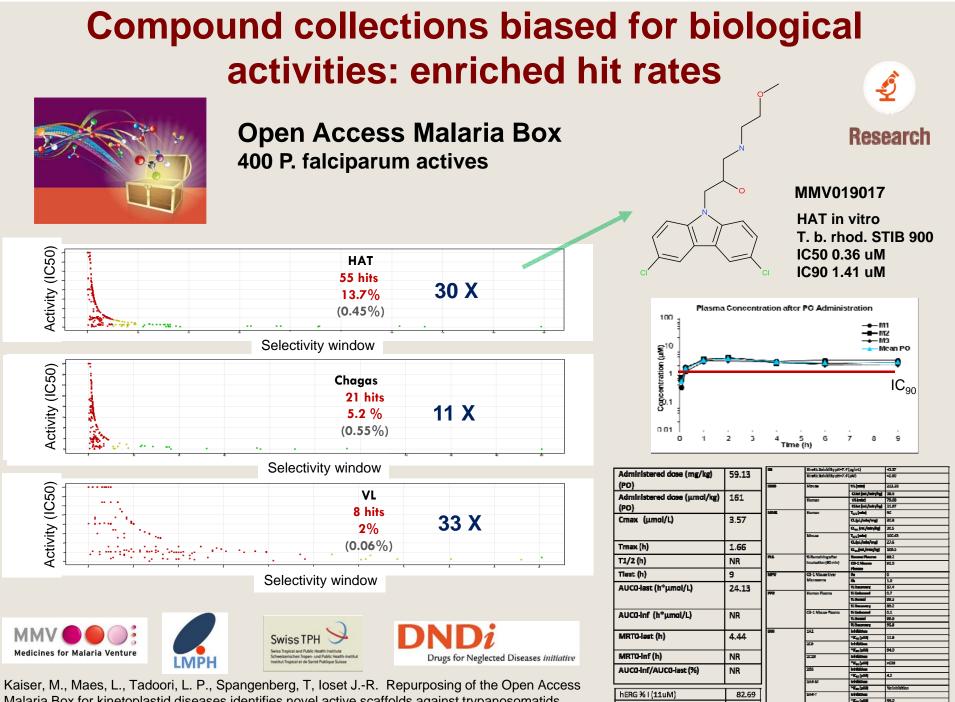
- Orthologs to targets relevant to parasites (Sanofi)

- Inhibitors of putative targets

Annotated pathogen

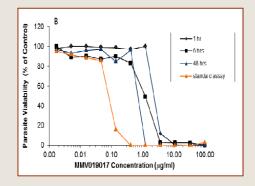
Pathogen targets

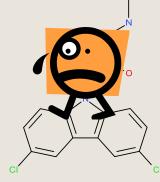
trypanothione reductase, PDE, HDAC, adenosine A2a antagonists, fatty acid synthase, methionine aminopeptidase 2, DHFR, squalene synthase, protein farnesyltransferase, cystein protease,...)


Target portfolio

human targets

Research




hERG % I (1uM)

14.22

Malaria Box for kinetoplastid diseases identifies novel active scaffolds against trypanosomatids Journal of Biomolecular Screening 2015; 20(5): 634-45. doi:10.1177/1087057115569155.

... but in vitro potency and nice PK profile is not all!

MMV019017

HAT in vitro T. b. rhod. STIB 900 IC50 0.36 uM IC90 1.41 uM

		dru	drug exposure time (h)		
	μΜ	1	6	24	72 standard assay
MMV665961	IC50	4.72±1.76	0.96±0.08	0.67±0.03	0.15±0.05
	IC90	9.05±1.22	2.16±0.60	1.72±0.94	0.29±0.05
MMV019017	IC50	2.36±0.28	1.18±0.47	0.71±0.05	0.08±0.03
	IC90	4.76±2.26	3.202±0.36	1.08±0.11	0.162±0.07

MMV19017 is a slow-killer

	T.b.rhodesiense STIB900					
in µg/ml	5	%	15	5%	30)%
Compound	IC50	IC90	IC50	IC90	IC50	IC90
MMV000498			0.336	1.84	0.551	1.7
MMV665961	0.023	0.077	0.145	0.285	0.217	0.394
MMV019017	0.002	0.013	0.084	0.165	0.251	0.429
MMV019746			0.602	1.13	1.83	2.91

Activity of MMV19017 is affected by increase in serum concentration

	Treatment period (days)	Dose (mg/kg/day)	Route	Cured / infected
Control				0/4
MMV 019017	4	60	p.o.	0/4
MMV19017 is not active in vivo				

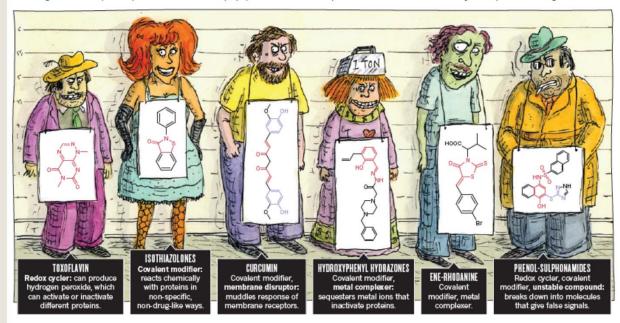
MMV19017 is not active in vivo

Kaiser, M., Maes, L., Tadoori, L. P., Spangenberg, T, loset J.-R. Repurposing of the Open Access Malaria Box for kinetoplastid diseases identifies novel active scaffolds against trypanosomatids. Journal of Biomolecular Screening, 2015; 20(5): 634-45. doi:10.1177/1087057115569155

Chemical Diversity : outcome

Research

Partner	Size	Nature of library	Pathogen	Outcome
Scynexis	100'008+	Scynexis Original Collection + few early collaboration (WEHI, Genzyme)	HAT	12 scaffolds, dropped
Eskitis	200'000	Natural Products (fractions)	HAT	2 scaffolds, dropped
WEHI	100'000	WEHI (commercial libraries)	HAT	10 scaffolds, H2L at WEHI
BioFocus	40'000	focused sets	HAT	3-4 scaffolds selected, not pursued
IPK	200'000	IPK (several commercial libraries)	VL	10 scaffolds, 1 selected for LO
GNF	700'000	GNF non-proprietary library	HAT, VL	10 scaffolds for VL, HAT (GNF and coll.), 2 Cha
Broad Institute	300'000	NIH library	Chagas	10 scaffolds in H2L/LO
Univ Dundee	100'000+	Various sets (commercial+HAT programme+VL programme)	VL	1 scaffold in H2L


low yield (especially for VL) and high attrition rate lack of related R&D knowledge -> focus on Pharma collections

Reducing the odds : getting rid of the garbage PAINS as Pan-Assay-INteference compoundS

PAINS are sets of chemical motifs likely to be promiscuous inhibitors (= frequent hitters = false positives) in an assay

WORST OFFENDERS

Pan-assay interference compounds (PAINS) fall into hundreds of chemical classes, but some groups occur much more frequently than others. Among the most insidious are the eight shown here (reactive portions shown in red and purple). These and related compounds should set off alarm bells if they show up as 'hits' in drug screens.

"Naivety about promiscuous, assay-duping molecules is polluting the literature and wasting resources" <u>warn Jonathan</u> <u>Baell and Michael</u> <u>A. Walters</u>

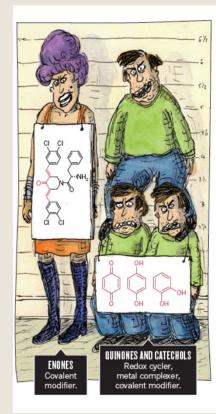
Ì

Research

New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays

Jonathan B. Baell**** and Georgina A. Holloway**

¹The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia and ¹Cancer Therapeutics-CRC P/L, 4 Research Avenue, La Trobe R&D Park, Bundoora, Victoria 3086, Australia


Received July 31, 2009

This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one says detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.

> DNDi Drugs for Neglected Diseases Initiative

Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010 Apr 8;53(7):2719-40. doi: 10.1021/im001137i

Reducing the odds : getting rid of the garbage PAINS filters Research

THREE TIPS PAINS-proof drug discovery

Learn disreputable structures.

Pan-assay interference compounds (PAINS) encompass some 400 structural classes, but more than half of PAINS in a typical library fall into just 16 easily recognizable categories¹². Software tools can filter PAINS from screening libraries, but they are no match for sharp-eved scientists.

Researchers should familiarize themselves with the most common structures and consult with PAINS-savvy medicinal chemists when these structures show up in hits. Scan compounds for functional groups that could have reactions with, rather than affinity for, proteins. These may not be flagged as PAINS, but can be similarly misleading.

Check the literature. Search by both chemical similarity and substructure to see if a hit interacts with unrelated proteins or has been implicated in non-drug-like mechanisms. Online services such as

SciFinder, Reaxys, BadApple or PubChem can assist in the check for compounds (or classes of compound) that are notorious for interfering with assays.

Assess assays. For each hit, conduct at least one assay that detects activity with a different readout. Be wary of compounds that do not show activity in both assays. If possible, assess binding directly, with a technique such as surface plasmon resonance.

Drill into further details. Compounds that become more active over time are probably acting through non-drug-like mechanisms. When a compound is tested with a protein and then diluted away, its activity should decrease. If not, it might be a PAINS.

Verify the identity and purity of hits. Sometimes a positive readout is due to an unstable breakdown product of the chemical identified from the screening library^{1,2}. Remake or repurify these molecules and test them again. J.B. & M.A.W.

480 substructures (filters)

Î

- Most PAINS fall within 16 substructural motifs
- Publicly available as SMARTS

http://blog.rguha.net/?p=850

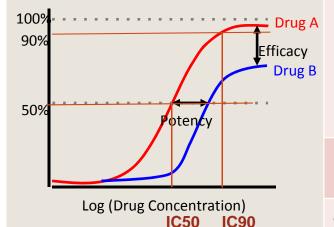
- 5-12% of academic libraries
- Several substructures are found in NP

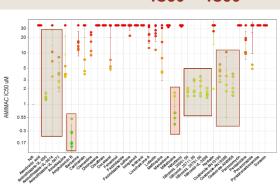
Drugs for Neglected Diseases initiative

Saubern, S. et al. KNIME workflow to assess PAINS filters in SMARTS format. Comparison of RDKit and indigo cheminformatics libraries. Molecular Informatics. 2011. 30. 847 - 850

List of reactive moieties related with toxicity effects (>100)

- can be applied as filters to rule out unwanted compounds
- might not always be an issue: is the presence of the toxicophore essential to maintain activity? can it be replaced?


Michael_acceptors	[#6]C(=O)C=C([H1])[#6]
beta_hetero_substituted_carbonyl	C(=O)CC(C)[N;R0,O;R0]
N_N	[#6]N-N[#6]
N_0	[#6]N-O[#6]
N_S_(not_sulfonamides)	[#6][S;O0][N;H0]
non_ring_S-O	[S;R0][O;R0]
triphenylphosphines	P(claaaaal)(claaaaal)(claaaaal)
diazonium	cN=Nc
polyene_chain_between_aromatics	cC=CC=CC=Cc
pyrene_fragments	c1c2cccc3c2c4c(cc3)cccc4c1
reactive_carbonyls_and_sulfonyls	C=[O,S][S,CF,CBr,CCI]
non_ring_S=N	[S;R0]=[N;R0]
thiourea	NC(=S)N



Hit identification and prioritization

• Activity

- Selectivity
- Quality

DNDi ID (Dundee)

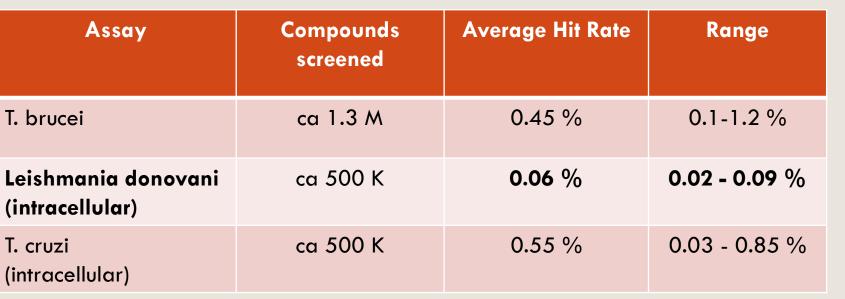
Criteria of selection

assay-related		compoun	d-related
relevance to the disease?	promastigote epimastigote trypomastigote axenic intracellular	chemical characterization	ID salt stereochemistry
relevance of end point?	IC50,IC90,Max %, hill slope,		
performance	controls, Z', heat maps,	purity	QC (>90/95%) resynthesis
criteria of selection	Ref below	drug-likeness	Ref below

standardization - benchmarking continuous optimization of assay protocols

better undertstanding of assays

Don R, loset JR. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections.Parasitology. 2014 Jan;141(1):140-6. doi: 10.1017/S003118201300142X



Identifying and addressing the challenges : VL

Global Hit rates of kinetoplastid screens

hit is defined as non-cytotoxic (SI>10) and IC₅₀ < 2 μ M (HAT), <10 μ M (VL) and <5 μ M (Chagas)

VL: 6 hits out of 10'000 compounds !

before hit analysis (clustering, toxicity/reactivity, physchem properties)

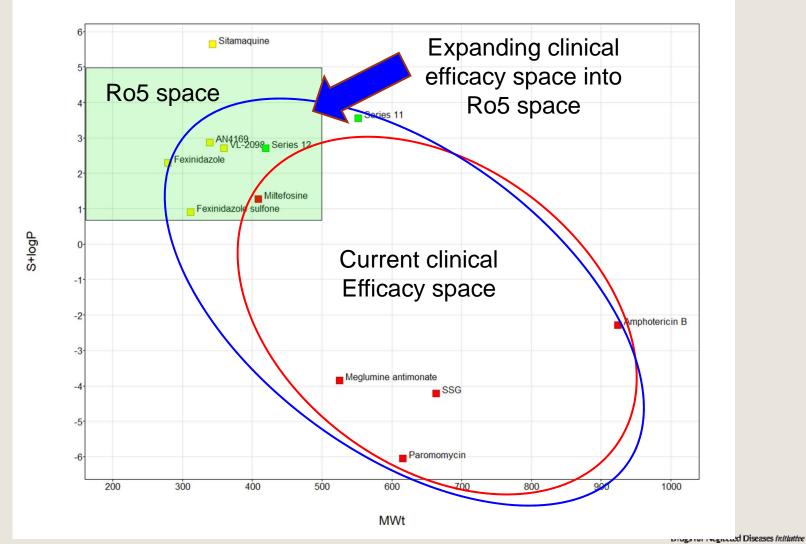
Attrition stikes early on: hit confirmation rate

Challenge: Deliver novel quality starting points for VL

Don R, loset JR. (2013). Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology, 28:1-7.

DNDi Drugs for Neglected Diseases initiative

Ŷ


Research

Evolution of drug chemical space for VL

Combining good drug-like properties and clinical efficacy

Ŷ

Research

S+logP model is based on artificial neural network ensembles (ANNE) constructed by our automatic model builder ADMET Modeler™ from almost 13,000 example compounds selected from the "StarList" of ion-corrected experimental logP values (Hansch, C. et al, 1995).


Adressing the challenges

- Develop and validated cost-effective higher throughput assays predictive of L. don. intracellular activity (cidal axenic assay)
- Screen more: highly diverse, novel and high quality collections
- Confirm activity in INMAC VL assay (Qced material)
- Move quickly to PoC of in vivo efficacy (build SAR, PK)
- Better understand drivers of in vivo efficacy: transition cidal axenic -> INMAC, INMAC to in vivo, PK/PD for novel series
- Obtain rights to develop (H2L/LO and beyond)
- Avoid duplication

Leishmania cidal axenic assay

(INMAC activity confirmed)

Nühs A, De Rycker M, Manthri S, Comer E, Scherer CA, Schreiber SL, loset JR, Gray DW. Development and Validation of a Novel Leishmania donovani Screening Cascade for High-Throughput Screening Using a Novel Axenic Assay with High Predictivity of Leishmanicidal Intracellular Activity. PLoS Neglected Tropical Diseases 2015 25;9 (9): e0004094. doi: 10.1371/journal.pntd.0004094

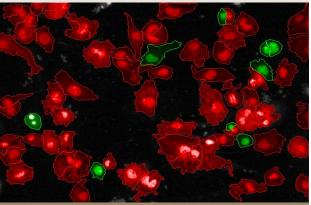
5.2

age assav pEC5

8 + 16* Hits

56 58

Expand on diversity screening: a reasonable approach to generate novel active starting points


- Pfizer global diversity research set (GDRS) 150'000
- Core diversity collection from Pharmas typically 10-50K collections
- GSK global 1.8 M collection screening (DDW Tres Cantos)

data and structures made public domain

- Natural Product collections focus on pure compounds (Pharma and beyond)
- Commercial collections

novelty/diversity/quality and rights to develop/publish

Peña L. et al. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep. 2015 5;5:8771. doi: 10.1038/srep08771.

THP1 cells infected with eGFP *L. donovani* (DAPI staining, 20x objective) in red: cells infected, in green: cells non infected *courtesy of GSK Tres Cantos*

Screening for more diversity

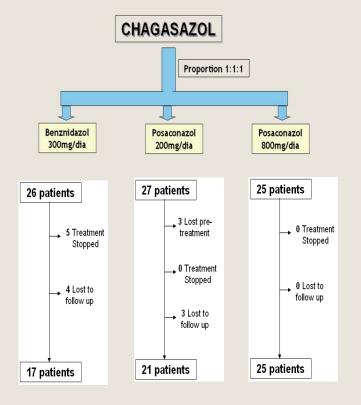
- access commercial compound libraries within but also outside of Pharmaceutical partnerships
- complement on chemical diversity
- de-risking IP restrictions/delays related hits identified from proprietary collections

access 0.5 Mio cpds to be screened against VL and secure screening capacity

- library only include structurally characterized chemicals
- access granted at no/low initial cost (apart from compound plating and material shipment)
- no IP restriction with regard access to chemical structures of entire file
- FTO related to hits (hits to be made public domain)

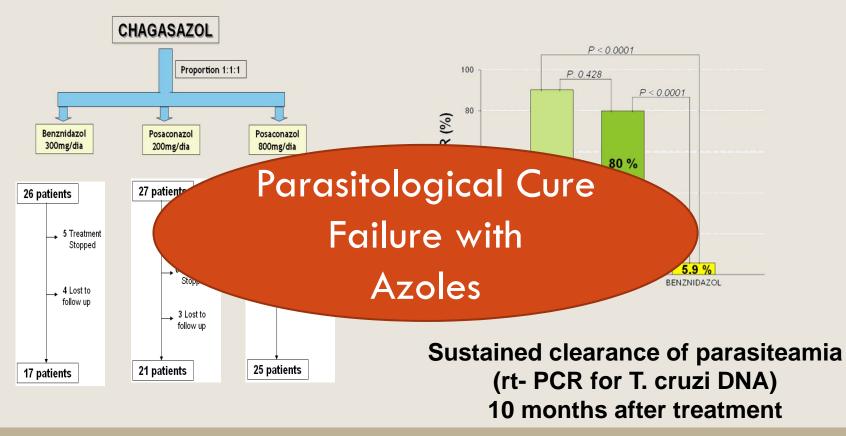
Status:

- 420K compound secured (Axxam, Biofocus and SPECS)
- contract in place at University of Dundee to screen 500K (started Q1 2015)
- Screening to be completed by end Q1 2016 (confirmation in INMAC assay)

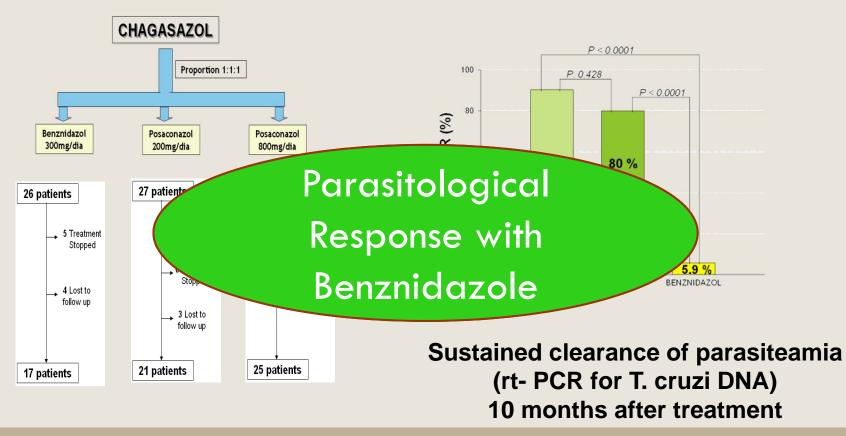


Identifying and addressing the challenges: Chagas

Better Understanding of assay models: Chagas learning from clinical trials



Sustained clearance of parasiteamia (rt- PCR for T. cruzi DNA) 10 months after treatment


Molina et al. N. Engl. J. Med. 2014 May 15;370(20):1899-908. doi: 10.1056/NEJMoa1313122. Randomized trial of posaconazole and benznidazole for chronic Chagas' disease

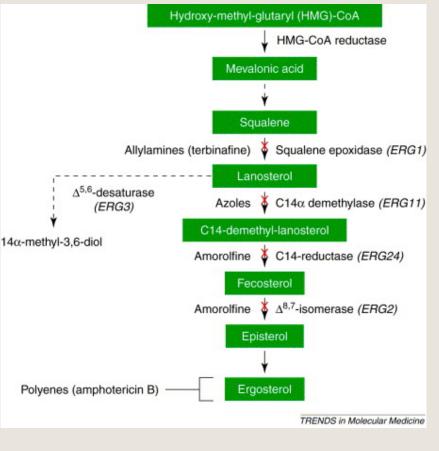
Better Understanding of assay models: Chagas learning from clinical trials

Molina et al. N. Engl. J. Med. 2014 May 15;370(20):1899-908. doi: 10.1056/NEJMoa1313122. Randomized trial of posaconazole and benznidazole for chronic Chagas' disease

Better Understanding of assay models: Chagas learning from clinical trials

Molina et al. N. Engl. J. Med. 2014 May 15;370(20):1899-908. doi: 10.1056/NEJMoa1313122. Randomized trial of posaconazole and benznidazole for chronic Chagas' disease

Impact on Chagas discovery screening cascade 🔮


- Deprioritze azoles as a class
- Deprioritize any alternative CYP51 inhibitors

and likely

• Deprioritize any inhibitor of the Sterol biosynthesis pathway

Way forward:

- can we reproduce this observation at the preclinical level?
- can we develop suitable models to predict/rule out CYP51 inhibitors?

Research

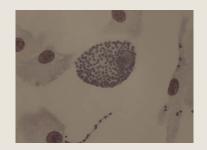
Learning from clinical data in vivo Chagas murine chronic models Research

(v) (E) v D v D v D v D (A) untreated control (B) benznidazole D118 D141 posaconazole (C (iii) posaconazole (HPMC-SV formulation) (D D71 D97 D118 D141 D14 Radiance (p/s/cm²/sr) 1x107 5x103

(Noxafil)

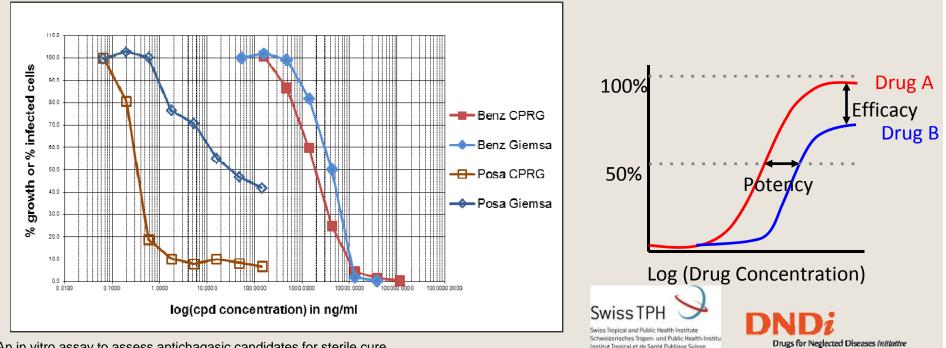
Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging

Amanda Fortes Francisco,^a Michael D. Lewis,^a Shiromani Jayawardhana,^a Martin C. Taylor,^a Eric Chatelain,^b John M. Kelly Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom⁴: Drugs for Neglected Diseases Initia Geneva Switzerland


Ŷ

Better Understanding of assay models: Chagas

in vitro potency doesn't necessarily mean efficacy


Comparison of two T. cruzi assay read-outs CPRG (OD measurement) and microscopical counting of Giemsa stained cells.

	CPRG		Gie	msa
values in nM	IC50	IC90	IC50	IC90
Benznidazole (n=5)	984 ± 163	3237± 388	3011 ± 1206	9016 ± 3539
Posaconazole (n=2)	0.4	na	33.5	na

Ŷ

Research

An in vitro assay to assess antichagasic candidates for sterile cure

Monica Cal, Jean-Robert loset, Matthias Fügi, Pascal Mäser, Marcel Kaiser, 9th ECTMIH meeting, Basel, 7-10 September, poster

Global Hit rates of kinetoplastid screens

Ŷ

Assay	Compounds screened	Average Hit Rate	Range
T. brucei	ca 1.3 M	0.45 %	0.1-1.2 %
Leishmania donovani (intracellular)	ca 500 K	0.06 %	0.02 - 0.09 %
T. cruzi (intracellular)	ca 500 K	0.55 %	0.03 - 0.85 %

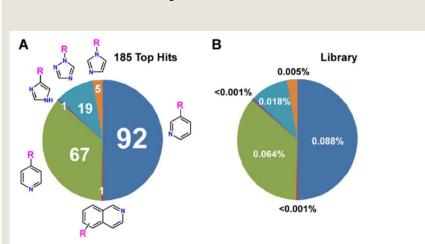
hit is defined as non-cytotoxic (SI>10) and IC₅₀ < 2μ M (HAT), <10 μ M (VL) and <5 μ M (Chagas)

Chagas : 55 hits out of 10'000 compounds

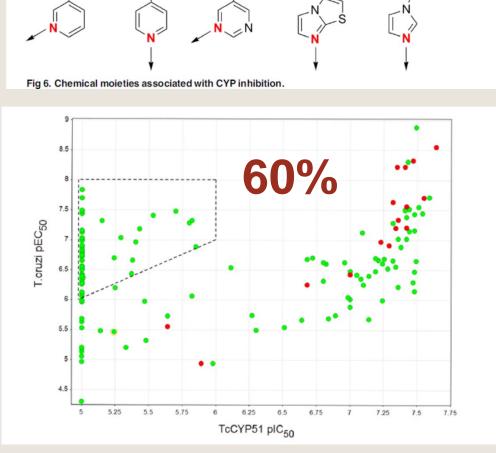
before hit analysis (clustering, toxicity/reactivity, physchem properties)

Hit confirmation: higher than VL

So far so good but ...

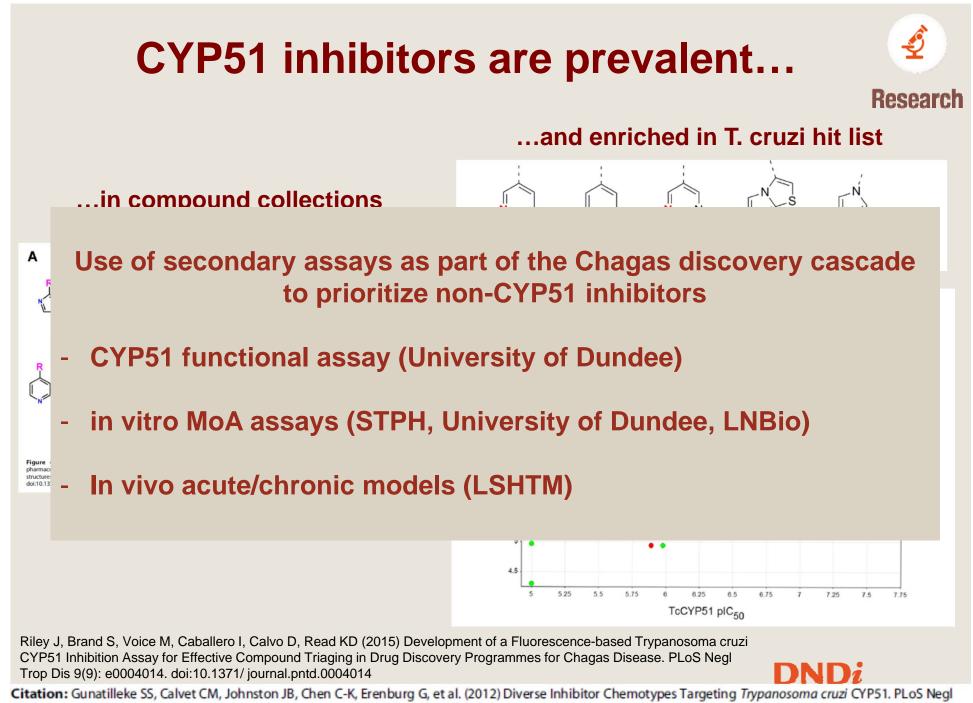

Don R, loset JR. (2013). Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology, 28:1-7.

CYP51 inhibitors are prevalent...



...and enriched in T. cruzi hit list

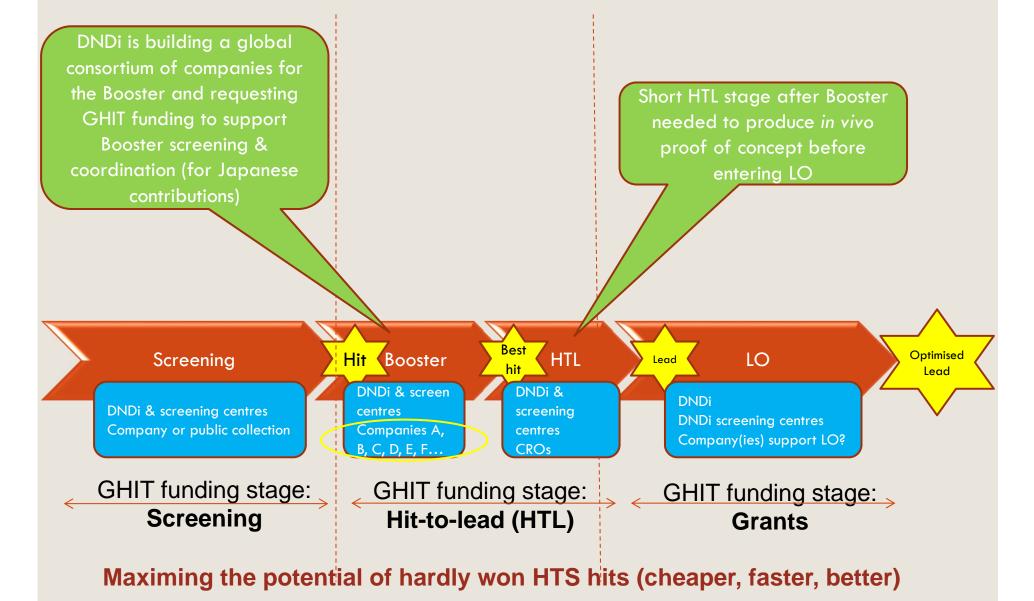
...in compound collections


Figure 4. Nitrogen-containing aromatic heterocyclic pharmacophores. Distribution of nitrogen-containing aromatic heterocyclic pharmacophores among 185 positive hits with binding score 4 or 5 (A) echoes their frequency in the library (B). R represents diverse chemical structures as shown in Table 53. doi:10.1371/journal.pnttd.0001736.g004

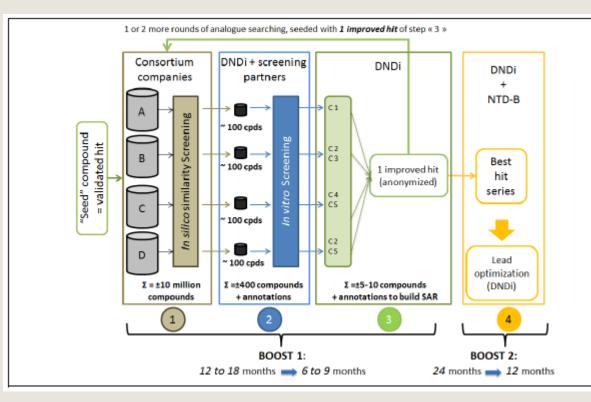
Riley J, Brand S, Voice M, Caballero I, Calvo D, Read KD (2015) Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease. PLoS Negl Trop Dis 9(9): e0004014. doi:10.1371/ journal.pntd.0004014

DND*i*

Citation: Gunatilleke SS, Calvet CM, Johnston JB, Chen C-K, Erenburg G, et al. (2012) Diverse Inhibitor Chemotypes Targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis 6(7): e1736. doi:10.1371/journal.pntd.0001736


Trop Dis 6(7): e1736. doi:10.1371/journal.pntd.0001736

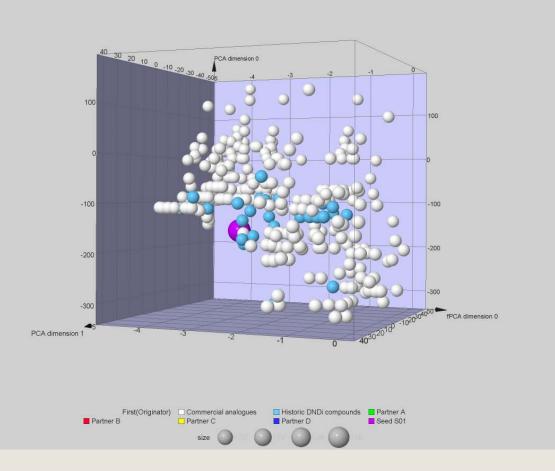
Identifying and addressing the challenges: the NTD Booster



The NTD Drug Discovery Booster: an novel approach to address collaborative early drug discovery

Overview of NTD Booster

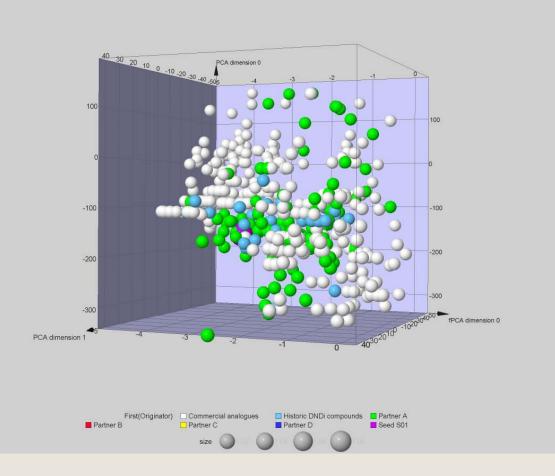
Objective: Delivering Novel Chemical Series for Leishmaniasis & Chagas disease: Overall during the first two years the Booster project will rapidly expand at least 4 promising hits/hit series each against *Leishmania donovani* and *Trypanosoma cruzi*, the causative agents of Leishmaniasis and Chagas disease, respectively. This will provide series with welldeveloped structure activity relationships (SAR) ready for immediate *in vivo* proof of concept studies or, where necessary, focused medicinal chemistry optimization to provide improved tools ready for *in vivo* studies. We aim that at least one novel chemical series will provide promising *in vivo* activity for each of the two parasites.



Source	# hits
Seed S01	1
DNDi (Historic)	27
Commercial*	314
Partner A	~90
Partner B	~90
Partner C	~90
Partner D	~40

*(Scifinder 80% similarity search; used to represent possible chemical space)

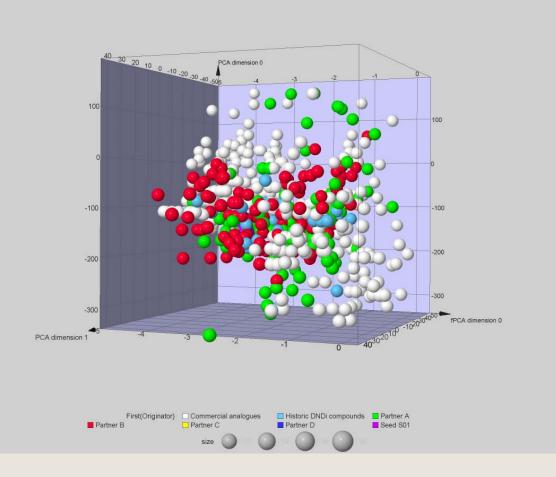
Plot shows Coverage of «Chemical Space» around the starting seed. Axes are Principal Component Analysis dimensions of Chemical fingerprint (X) and Molecular Properties (Y, Z)



Source	# hits
Seed S01	1
DNDi (Historic)	27
Commercial*	314
Partner A	~90
Partner B	~90
Partner C	~90
Partner D	~40

*(Scifinder 80% similarity search; used to represent possible chemical space)

Plot shows Coverage of «Chemical Space» around the starting seed. Axes are Principal Component Analysis dimensions of Chemical fingerprint (X) and Molecular Properties (Y, Z)

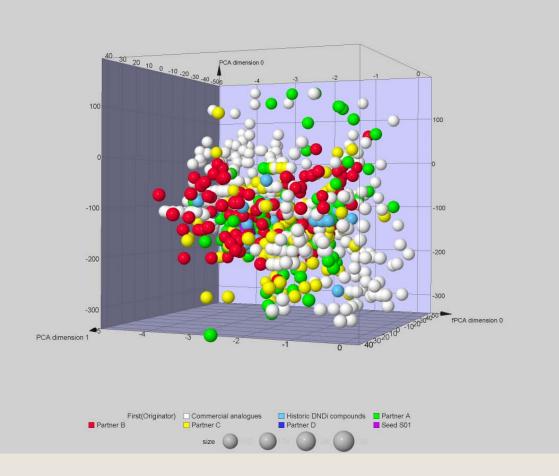


DNDi Drugs for Neglected Diseases Initiative

Source	# hits
Seed S01	1
DNDi (Historic)	27
Commercial*	314
Partner A	~90
Partner B	~90
Partner C	~90
Partner D	~40

*(Scifinder 80% similarity search; used to represent possible chemical space)

Plot shows Coverage of «Chemical Space» around the starting seed. Axes are Principal Component Analysis dimensions of Chemical fingerprint (X) and Molecular Properties (Y, Z)

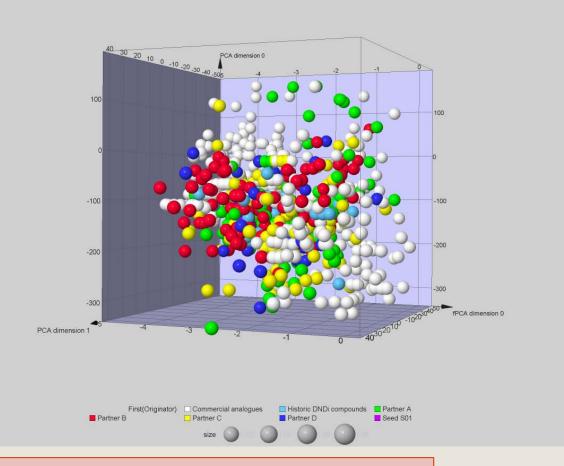


DNDi Drugs for Neglected Diseases initiative

Source	# hits
Seed S01	1
DNDi (Historic)	27
Commercial*	314
Partner A	~90
Partner B	~90
Partner C	~90
Partner D	~40

*(Scifinder 80% similarity search; used to represent possible chemical space)

Plot shows Coverage of «Chemical Space» around the starting seed. Axes are Principal Component Analysis dimensions of Chemical fingerprint (X) and Molecular Properties (Y, Z)



DNDi Drugs for Neglected Diseases initiative

Source	# hits
Seed S01	1
DNDi (Historic)	27
Commercial*	314
Partner A	~90
Partner B	~90
Partner C	~90
Partner D	~40

*(Scifinder 80% similarity search; used to represent possible chemical space)

Plot shows Coverage of «Chemical Space» around the starting seed. Axes are Principal Component Analysis dimensions of Chemical fingerprint (X) and Molecular Properties (Y, Z)

Conclusion: For Seed SO1 the Booster contributions are highly complementary and explore the chemical space well

Main Challenges for Sustainable R&D for Neglected Patients

IP & Open Innovation Practices

Access to compounds, knowhow and knowledge

- Increase access to innovation
- Ensure equitable access to all patients & affordable treatment

⇒ Medicines Patent Pool

- \Rightarrow WIPO Re:Search
- ⇒ Open & equitable licensing ⇒ Open Innovation portal/CHEMBL www.dndi.org/diseases-projects/open-innovation.html
- Open Access Drug Discovery Malaria Box, Pathogen Box,...

DNDi sharing discovery data via

The Pathogen Box

The **Pathogen Box** will contain ~400 diverse, drug-like molecules active against neglected diseases of interest and will be available free of charge at the end of 2015 (in collaboration with MMV)

Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning

A set of 100 registered drugs with drug repositioning potential for neglected tropical diseases was assembled. The compound collection was systematically screened against protozoan parasites, *T. b. rhod., L. donovani, T. cruzi* and *P. falciparum*

Two series of fenarimols for the treatment of Chagas disease

This second release includes data on a further 84 compounds from the two more advanced series of fenarimols which include the preclinical candidates EPL-BS0967 and EPL-BS1246, both of which are *T.cruzi* CYP51 inhibitors

Source data from neglected disease R&D pipeline review

In late 2013, DNDi and colleagues published an **analysis in The Lancet Global Health looking at the R&D landscape over the last decade in terms** of new therapeutic products for 49 so-called neglected diseases. In the hope of promoting further research we have created a public data-sharing page with full datasets from the study freely accessible to all.

Screening and lead optimization of new compounds for Chagas disease (>300,000 compounds)

We have evaluated multiple hits generated from a **high-throughput screen of over 300,000 compounds to identify inhibitors of** *T. cruzi* (Broad Institute Screening of NIH collection). These studies have resulted in the discovery of two novel series currently in lead optimisation.

iNTRODB - an Integrated system for searching drug-target proteins from parasitic protozoa genomes

iNTRODB is an integrated system for searching drug-target proteins from parasitic protozoa genomes that cause neglected tropical diseases including leishmaniasis, Chagas' disease and human African trypanosomiasis. Japanese academic organizations and a pharmaceutical companies, including Tokyo Institute of Technology, University of Tokyo and Astellas Pharma Inc. www.bi.cs.titech.ac.jp/introdb

Screening identifies new compounds for HAT

Identification of compounds against Trypanosoma brucei brucei BS427 by high-throughput screening of whole parasites (87,926 compounds, WEHI)

DNDi Screening of the MMV Open Access Malaria Box for HAT, VL, and Chagas disease

Screening of the MMV Open Access Malaria Box in the search for new drugs against Leishmaniasis, Chagas' disease and Human African trypanosomiasis

SCYNEXIS Inc. as part of the DNDi HAT Lead Optimization Consortium

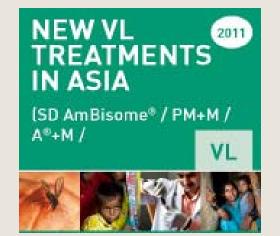
Screening and optimization of specific chemical series against human African Trypanosomiasis (HAT): 4926 compounds

www.dndi.org/diseasesprojects/open-innovation.html

Achievements

10-Year Results

- 2 new malaria treatments
- 1 new sleeping sickness combination
- 1 new visceral leishmaniasis combination for Africa
- 1 set of VL treatment modalities for Asia
- 1 Chagas paediatric dosage form
- Largest pipeline ever for the kinetoplastid diseases
- Clinical research platforms in Africa
- □ Over 350€M raised equally from public and private sources
- On track to deliver new treatments per business plan



6 New Treatments Developed Since 2007

☑ Easy to Use ☑ Affordable ☑ Field-Adapted ☑ Non-Patented

Thank You to All Our Partners & Donors

DNDi

DNDi Nutshell - From bench to bedside

THANK YOU

R&D FOR NEGLECTED PATIENTS

www.dndi.org