

Institut de recherche Agir avec le Sud pour le développement Acting with the South:

Advances and challenges in current diagnostics for HAT

Veerle LEJON

Symposium: Towards elimination of HAT

cedure

pro

-stel

Multi

Diagnosis of HAT

- Suspicion of infection
 - Clinical, serological or molecular evidence
- Confirmation of infection: parasitology
 - Microscopic detection of the parasite
- Disease stage determination & treatment outcome
 - Examination of cerebrospinal fluid

Although the principles of HAT diagnosis hardly changed for more than a century

important advances have occurred in the last decade

. . .

Plate 1. Hassane Sakande in Guinea, 2013.

Evolving towards the ideal test:

Affordable, Sensitive, Affordable, Sensitive, User friendly, Specific, User friendly, Rapid & robust, Rapid & robust,

Equipment free,

Kettler, White & Hawkes. Mapping the landscape of diagnostics for sexually transmitted infection. Geneva WHO/TDR 2004

A

S

S

U

R

E

D

Serology

- CATT/T.b. gambiense (Magnus, 1978):
 - In use since '80-ies
 - Antigen: whole fixed trypanosomes
- **A** 0.5€
- S Sensitivity: 91.2% (78.1-99.8) (reviewed by
- S Specificity: 97.4% (93.8-99.2)^{Checchi, 2011)}
- U Simple
- ℝ − 5-10 minutes, storage 4°C
- **E** Agitator, electricity
- D Population screening for T.b. gambiense

ASTMH meeting 2014

Serology

- Rapid sero-Diagnostic Tests:
 - 1st generation tests commercialised
 - Antigen: purified native VSG
- A - 0.5\$ - 1.5 €
- S - Sensitivity: 89.6-98.5% S

(Büscher, 2014; RDT test brochures) - Specificity: 87-98.6%

- U Simple
- R - 15 minutes, Robust
- E Equipment free
- Individual, passive screening for T.b. gambiense

Serology

- Immune trypanolysis:
 - Reference test for *T.b. gambiense* specific antibodies
 - Antigen: live, cloned, bloodstream *T.b. gambiense*

<u>▲</u> – >8\$

- S Sensitivity: 95.1-100% (Van Meirvenne, 1995; Lutumba, 2006; Jamonneau, 2010; Mumba, 2014)
- S Specificity: 100% (Van Meirvenne, 1995)
- U Live cloned T.b. gambiense
- ℝ − 2.5-3 hours, live infective T.b. gambiense
- E Liquid nitrogen, laboratory animals
- Surveillance, limited to reference labs
 Belgium, Burkina and DR Congo

ASTMH meeting 2014

Serology challenges

- Training of RDT users crucial, cfr malaria (Mukadi, 2013)
- Specificity of RDTs: further evaluation & improvement
 - Individual diagnosis: RDT Combination
 - Surveillance: RDT + trypanolysis: Specificity 99%
- Management of serological suspects?
 - Status: HAT, trypano-tolerant or false positive?
- 2nd generation RDTs:
 - Recombinant antigens: Easier & cheaper production
 - Inclusion of invariable antigens:
 Diagnosis of *T.b. rhodesiense*? (Sullivan, 2014)
 - Not yet commercialised & accuracy to be demonstrated

Molecular detection

		Trypanozoon	T.b.g.	T.b.r.	Sens	Spec		
DNA	PCR	х	х	х		<u> </u>		
	PCR-oligo	х			99.0%	97.7%	Reviewed by	
	RT-PCR	х			(92.0-99.9)	(95.0-99.5)	iviugasa, 2012	
	LAMP	х	x	x	76.9-93%	92.8-100%	Matovu, 2010; Mitashi, 2013; Mugasa, 2014	
RNA	NASBA	х			93.9%	100%	Mugasa, 2014	
	SL-RT-PCR	х			92%	96%	Gonzalez-Andrade,2014	

Molecular detection

- LAMP (Loop mediated isothermal amplification)
 - Random insertion mobile element (RIME)
 - Trypanozoon
 - A 5\$

S

- Sensitivity: 77-93%
- S Specificity: 93-100%
 -) Trained technician, micropipettes
- R 1 hour, thermostable
- E Incubator, electricity
- District/reference hospital level

Molecular detection challenges

- Training of users is crucial
 - LAMP performers
 - Sample preparation (avoid contamination)
- Improved sensitivity: use of buffy coat
 - Experienced technician for isolation of buffy coat
 - Centrifuge
- Accuracy: to be documented
 - Published: reference labs & on extracted DNA
 - Field evaluation studies ongoing
- Management of molecular suspects?
 - Status: HAT, trypano-tolerant of false positive
- Future role of LAMP
 - Remote testing
 - Diagnostic algorithm?

Parasitology sensitivity (T.b. gambiense)

	LNA (Iymph node aspirate)	WBF (wet blood film)	TBF (thick blood film)	mHCT (micro hematcrite centrifugation)	mAECT (mini anion exchange centrifugation)	mAECT-BC mAECT on buffy coat)
Miézan, 1994	59%	22%	35%	48%	85%	
Lutumba, 2006	19%	4%	27%	57%	75%	
Camara, 2010	77%				79%	97%
Mumba, 2014 39%				48%	80%	91%
	19-77%	4-22%	27-35%	48-57%	75-85%	91-97%

Parasitology

- Mini-Anion Exchange Centrifugation on Buffy Coat
 - Concentrate trypanosomes in buffy coat
 - Gel retains RBC, not trypanosomes
 - 2 models (Ivory Coast, DR Congo)

A - 6€ S

- Sensitivity: 91-97%
- S - Specificity: 100% (assumed)
 - Trained technician
- R 1 hour, thermostable
- Centrifuge, microscope Ę
- Mobile team, district/reference hospital level

ASTMH meeting 2014

Parasitology challenges

- Concentration methods recommended
 - Equipment limits implementation in peripheral health centres
 - maect:
 - Price (DEAE gel)
 - Vulnerable production: RDC + CI
- Quality control systems needed
 - Recordings

Stage determination

MSC (Miézan, 2000)	0-5 WBC /μl	≥ 6WBC/μl	
Trypanosome -	Hemo-lymphatic (1)	Meningo-encephalitic (2)	
Trypanosome +	Meningo-encephalitic (2)	Meningo-encephalitic (2)	

- A <0.5€ S – Sensit
 - Sensitivity 93-98%?
- S Specificity
- U Invasive
- R 30 minutes
- E Microscope
- D All levels

Treatment outcome

- Systematic follow-up visits with LP at 6, 12, 18 and 24 months post-treatment
 - Pentamidine & NECT: low relapse rates
 - Low compliance to FU
- Focus FU on symptomatic patients
 - Trypanosome detection
 - CSF: modified single centrifugation
 - Blood: not to be neglected
 - Evolution of CSF WBC count:
 - 2 step algorithm (Mumba 2010; Priotto, 2012)

WHO (2013): Technical Report Series 984

Criteria for assessing the outcome of treatment for human African trypanosomiasis in patients treated with drugs of known efficacy who present for follow-up

	Stage before initial treatment			
Time of follow-up ^a	First-stage (adapted from reference 102)	Second-stage (references 121 and 122)		
3 months (0-4)	• T+: Relapse. Treat.	• T+: Relapse. Treat.		
6 months (5-9)	 0-5 CSF-WBC/µl, T-: Cure 6-20 CSF-WBC/µl, T-: Uncertain evolution Follow-up at 12 months or treatment at the discretion of the clinician, taking into account clinical presentation > 20 CSF-WBC/µl, T-: Relapse. Treat T+: Relapse. Treat. 	 0-5 CSF-WBC/µl, T-: Cure 6-49 CSF-WBC/µl, T-: Uncertain evolution Follow-up at 12 months or treatment at the discretion of the clinician, taking into account clinical presentation ≥ 50 CSF-WBC/µl, T-: Relapse. Treat. T+: Relapse. Treat. 		
≥ 12 months (10)	 0-5 CSF-WBC/µl, T-: Cure 6-20 CSF-WBC/µl, T-: Uncertain evolution Further follow-up or treatment at the discretion of the clinician, taking into account clinical presentation > 20 CSF-WBC/µl, T-: Relapse. Treat. T+: Relapse. Treat. 	 0-20 CSF-WBC/μl, T-: Cure > 20 CSF-WBC/μl, T-: Relapse. Treat. T+: Relapse. Treat. 		

A

S

S

U R

e D

Challenges in staging & treatment outcome

- New markers: CSF neopterin (Tiberti, 2012, 2013)
 - RDT being developed
 - Role in patient management?
- Staging: Decreasing importance
 - Lower toxicity of NECT
 - New drugs
- Diagnosing relapse:
 - Based on lumbar puncture
 - Invasive
- Research on blood markers ongoing

Conclusion

- Rhodesiense HAT: little progress
 - Antigens: sub-optimal accuracy
- Gambiense HAT:
 - Development RDT: Facilitate integration of HAT control
 - Performance, cost-effectiveness, implementation strategy
 - Molecular tests:
 - LAMP: approaching patient care level
 - RNA: more accurate
 - Staging: decreasing importance
 - Follow-up: simplified

Conclusion

- Be aware for over-optimism: Not yet «test & treat» scenario:
 - Syndromic algorithms to be evaluated (Palmer, 2013)

_	PPV:

	Prevalence			
Test specificity	0.1%	0.01%	0.001%	
90%	1%	0.1%	0.01%	
95%	2%	0.2%	0.02%	
97%	3%	0.3%	0.03%	
99%	9%	1%	0.1%	

HAT elimination context (WHO,2012)

Symposium: Towards elimination of HAT

