

Use of data mining and chemoinformatics in the identification and optimization of high-throughput screening hits for NTDs

<u>James Mills</u>; Karl Gibson, Gavin Whitlock, Paul Glossop, Jean-Robert Ioset, Leela Pavan Tadoori, Charles Mowbray

ICOPA XIII 13 Aug 2014

Two applications of chemoinformatics

- Identification of novel series from re-triage of HTS results
 - Stage 1: identify all hit series meeting basic criteria
 - Novel and active but not toxic
 - Stage 2: prioritise series for follow-up
 - Generation of view of all related chemical matter
 - eMolecules: commercially available chemical space
 - ChEMBL: bioactivity space
- Optimization of compounds within a lead series
 - Concept of additivity in SAR
 - Apply additivity to compound design

Input data

- Clustered actives from phenotypic HTS*
 - IC₅₀: potency against Leishmania
 - Mouse macrophage assay
 - CC₅₀: toxicity against human cell line
 - Seek hits with >10-fold window
 - Or evidence that this can be attained
- Pre-existing DNDi dataset
 - Leishmania IC_{50} and CC_{50} data for 5000 cpds
 - Data collated from multiple projects and series
 - Seek to avoid this chemical space
 - *i.e.* require novel hit matter

^{*} Note that no data for inactives were available

Stage 1: criteria to triage hit clusters

- Is cluster enriched in compounds with >5-fold window?
 - In complete dataset, 60% of hits have >5-fold window
 - Is proportion of cpds with 5-fold window better than 60%?
 - P < 0.1: proportion could have arisen by chance
- Within pre-existing DNDi chemical space?
 - Built Bayesian model to score cpds
 - High: contains features common in DNDi dataset
 - Favour compounds with low scores
- Structural alerts based on toxicity literature
 - Traffic-light system
- Drug-like properties (MWt <500, clogP < 6...)</p>

Hit series triage

Potency/Toxicity window vs cluster, coloured by alerts (blue = clean)

Stage 2: prioritisation of clusters

- Which of the 50 clusters should we follow up on?
- Sent data package to panel of NTD med chem experts to assess:
 - Probability of compound optimisation to drug
 - Potency vs toxicity
 - Scope for modification
 - Are there compounds to order in and screen?
 - Rapidly test local SAR of core and substituents
 - Potential off-target activity
 - Likely ADMET properties (metabolic stability etc.)
 - Precedence in neglected diseases
- Each cluster tagged as high/medium/low priority

Characterisation of local chemical space

Property index vs structure index

MWt vs clogP

Identification of local bioactivity space

Result: identification of novel series

Confirmed activity within series

Hit re-triage summary

- Revisiting and consolidating legacy data can prove useful
 Identified novel series with anti-*Leishmania* activity
- Largely automated HTS triage to identify 50 chemotypes
 - Series enriched in actives with a window over toxicity
 - Singletons with a window over toxicity
- Deeper dive to prioritise the 50 selected chemotypes
 - Assessed local chemical space for precedented compounds
 - Evidence that synthesis is possible
 - Select compounds for immediate screening
 - Assessed bioactivity data to suggest mode of action/toxicity

Lead optimization: SAR additivity

- Double-mutant analysis
 - e.g. CDK2 compounds from ChEMBL: additive SAR

T. brucei piperidine series

IC₅₀ 458nM at *T. brucei* CC₅₀ 44μM

- Assess additivity of series
- Apply additivity to prediction of more potent compounds

Assessment of additivity

- Sandexis
- For each square, predict potency of 4th compound from other 3
- Deviations from prediction
 - <10-fold: within experimental error</p>
 - >10-fold: non-additivity?
 - or submit for retest
- This series shows additive SAR
 - Use squarewise analysis to predict
 - Expect accuracy within 3-fold

Application of additivity

- Fill gaps in chemical space
- Predict potency for 4th corner of all possible squares

Also use to suggest informative compounds

Results from squarewise analysis

Summary

- Extract maximal information from accumulated data
 In particular public datasets (ChEMBL)
- Identification of novel series by re-triage of HTSs
 - Reduce dataset to series of interest
 - Extract all salient information for these series
 - Apply med. chem expertise to interpret information
- Optimize potency within a given series
 - Assess additivity of all data
 - Apply additivity to low-risk prediction of unmade compounds

Acknowledgements

- iThemba: synthesis on *T. brucei* project
- EBI: ChEMBL database
 - https://www.ebi.ac.uk/chembl/
- LMPH Antwerp: testing on Leishmania project
- Scynexis: synthesis and testing on *T. brucei* project
- Pfizer: *T. brucei* chemical matter

Squarewise vs Free-Wilson

Free-Wilson assigns weights to each functional group
 Potency is sum of weights for each group

Free-Wilson	Squarewise analysis
Assumes additivity	Assumes additivity
Predicts full <i>n</i> x <i>n</i> matrix	Predicts incomplete <i>n</i> x <i>n</i> matrix
Fits variables to data	No fitting of data
All Rgp occurrences contribute to prediction <i>i.e.</i> global model	2 Rgp occurrences contribute to prediction <i>i.e.</i> local model