

Chagas Disease Drug Discovery Entering a New Era

Drugs for Neglected Diseases *initiative* Iniciativa Medicamentos para Enfermedades Olvidadas

Eric Chatelain, PhD Head of Drug Discovery

ICOPA Meeting, Mexico, 12th August 2014

Chagas Disease

- Effective immune responses provide control of the infection but do not prevent development of disease
- Very long time course for development of disease and evaluation of response
- 20-30% patients develop the disease

Tarleton R, 2003 in World class parasites vol 7 pp 107-15

Chagas Disease – The TPP

	Acceptable	Ideal
Target population	Chronic	Chronic and Acute (Reactivations)
Strains	Tcl, Tcll, TcV and TcVI (according to new 2009 classification)	All according to new classification (2009)*
Distribution	All areas	All areas
Adult/children	Adult	All
Clinical efficacy	Non inferior to benznidazole in all endemic regions (parasitological)	Superiority to benznidazole to different phases of disease (acute and chronic) (parasitological)
Safety	Superiority to benznidazole ** 3 CE plus 2 standard LE or ECG during treatment	Superiority to benznidazole or nifurtimox No CE or LE or ECG needed during treatment
Activity against resistant strains	Not necessary	Active against nitrofuran- and nitroimidazole-resistant <i>T. cruzi</i> strains
Contraindications	Pregnancy/lactation	None
Precautions	No genotoxicity; No pro-arrythmic potential	No genotoxicity; No teratogenicity; No negative inotropic effect; ; No pro- arrythmic potential
Interactions	No clinically significant interaction with anti-hypertensive, anti-arrythmic and anticoagulants drugs	None
Presentation	Oral	Oral
Stability	3 years, climatic zone IV	5 years, climatic zone IV
Dosing regimen	Comparable to systemic antifungal treatments	Once daily/ 30daysgs for Neglected Diseases <i>initiative</i> Iniciativa Medicamentos para Enfermedades Olvidadas

New Era for Chagas Disease Drug Discovery Why?

Results Clinical Trials NCT0116967 and NCT01489228

Implications for Delivery of Future Chagas Candidate

Why didn't we predict these clinical outcomes?

What did we do wrong?

What don't we understand?

Are we asking the right questions in our models?

Chagas Translational Challenges

Needs and way forward

- Need to translate research data to assays compatible with Drug Discovery & Development process
- Better translation *in vitro/in vivo* models and the clinic
- □ Address the right questions in our models
- □ Better understanding of PK/PD relationships
- □ Need for Biomarkers (Test of treatment efficacy)
- Integrate when available or generate MoA data: helpful to predict potential safety issues and monitor specific parameters during development (Toxicology studies, clinical trials)

Chagas Disease Drug Discovery

- Major Advances
- New assays available

In vitro

Phenotypic HTS for intracellular T. cruzi

New research tools

➤ Azoles

□ New HTS assays for *T. cruzi* (High content)

After software analysis: detection of host cell and intracellular parasites

Primary Screening Assay Potency vs Efficacy

General Property of CYP51 Inhibitors (w. scaffolds tested so far) Potency always good but Potency ≠ Efficacy

Secondary Assays (1) Compound Profiling

Time and Concentration Dependencies Fast vs slow killing

Wash-out / Recovery assays
 Static or cidal mechanism

Secondary Assays (2) Compound Profiling

In vivo

Are the *in vivo* experimental models used predictive?

Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 105(2): 233-238, March 2010 233

In vitro and in vivo experimental models for drug screening and development for Chagas disease

Alvaro José Romanha^{1,2/+}, Solange Lisboa de Castro^{1,3}, Maria de Nazaré Correia Soeiro^{1,3}, Joseli Lannes-Vieira^{1,3}, Isabela Ribeiro⁴, André Talvani⁵, Bernadette Bourdin⁴, Bethania Blum⁴, Bianca Olivieri^{1,3}, Carlos Zani^{1,2}, Carmenza Spadafora⁶, Egler Chiari⁷, Eric Chatelain⁴, Gabriela Chaves⁸, José Eduardo Calzada⁹, Juan Manuel Bustamante¹⁰, Lucio H Freitas-Junior¹¹, Luz I Romero^{6,9}, Maria Terezinha Bahia⁵, Michel Lotrowska⁴, Milena Soares¹², Sonia Gumes Andrade^{1,12}, Tanya Armstrong¹³, Wim Degrave^{1,3}, Zilton de Araújo Andrade^{1,12}

Evaluation of in vivo efficacy

(Parasites eventually enter tissues/organs and are no longer detected in blood)

----- indicates possible positive outcomes following drug treatment ie.,

a. Significant reduction in blood parasitemia → If 100% efficacy is observed, animals are immunosuppressed.

- b. Parasite rebound after immunosuppression → Drug is tested in 20 day dosing model.
- c. No parasite rebound after immunosuppression \rightarrow confirm cure with PCR

Model Compatible with a Discovery Program

On average 40-60% cure with posaconazole; variable but always > or = to that observed with Benznidazole (on average 40% cure)

No translation with clinical data using this model

Challenge current animal models/Dogma Generate systematic data

- □ Review of *in vivo* models and challenge their adequacy
- Design testing hypotheses to improve predictivity of models
- Assessment of new models or technologies and test hypotheses; generate systematic data
 - □ Bio Luminescent Imaging (BLI): Spatial diversity of chronic foci → impact on tissue PCR
- Assessment of the usefulness of identified markers from proteomic studies in animal models of Chagas disease

Increase the predictability of these models and their translation to human disease

Testing hypotheses in BLI in vivo model

Protocol for investigating drug efficacy against chronic T. cruzi infection*

Protocol for investigating drug efficacy against acute T. cruzi infection

New Chagas Screening Cascade

Acceptance criteria for a		Towards PoP	
new cher	nical series		
Screening on T. WT strain (TcVI	. cruzi <i>Tulahuen</i>)	Primary ADME characterisation	
IC ₅₀ Max. activity	 < 5 μM > 90% 	In silico predictions of Phys/Chem properties → no predicted absorption liabilities Kinetic solubility (pH 2 & 6.5) > 50 μg/ml	
Cytotoxicity on	host cell 3T3	gLog D< 4	
SI	> 10		
		Scale up	
New ser	ies profiling	PK in Balb/c mice	
Panel of T cruzi strains	\rightarrow Potency against all	(PO 20 mg/kg an <mark>d IV 1 mg/kg)</mark>	
	genotypes (priority to Tcl, Tcll, TcV and TcVI) or NO GO	Pre- formulation (if needed)	
CYP51	> 10 µM, or DE- PRIORITISATION	Tolerability in Balb/c	
Trypomastigotes	→Potency or DE- PRIORITISATION	<i>In vitro</i> validation against <i>T. Cruzi</i> CL Brener (TcVI)	
Time to kill	Fast-acting preferred	PoP efficacy <i>in vivo</i> – 5 days	
Intellectual Property as	sessment → FTO	Balb/c mice infected with CL Brener (at the highest dose)	

Potential candidate

Further profiling for a successful PoP

ADME

Plasma stability (mouse, rat & human) Plasma protein binding (mouse, rat & human) Permeability (Caco -2)

Safety & Toxicology

Panel of mammalian cells for cytotoxicity

CYP screening	> 10 μM
hERG	> 30 μM
Mini AMES	negative
<i>In vitro</i> Micronucleus	negative
CEREP profiling	
Preliminary CV test in rat	negative

Potency Reversibility in T. cruzi Tulahuen assay

Entrance in LO

Conclusions

- Moving towards a better understanding of the characteristics needed for a compound to bring forward
- Translational Challenges are being tackled both in vitro and in vivo
- Recent major change/shaking of the Chagas drug discovery landscape
 - □ Scientific impact
 - New «players»: GNF, GSK/DDU, Broad/Eisai, and numerous academic groups and EU/FP7 consortia
- More confidence that candidates moving forward will be efficacious in the clinic but still need new series

Acknowledgments

BY WORKING TOGETHER IN A CREATIVE WAY, PDPS, LARGE AND SMALL PHARMA, AND THE PUBLIC SECTOR CAN BRING INNOVATION TO NEGLECTED PATIENTS!

www.dndi.org