Population-Pharmacokinetics of the Artesunate-Mefloquine (ASMQ) Fixed Dose Combination for the Treatment of Uncomplicated DNDi **Falciparum Malaria in African children**

Monia Guidi^{1,2}, Laurent A. Decosterd², Thomas Mercier², Chantal Csajka^{1,2}, Kevin Omondi³, Bernhards Ogutu³, Gwénaëlle Carn⁴, Jean-René Kiechel⁴

¹School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Switzerland, ² Laboratory and Division of Clinical Pharmacology Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland, ³Kenya Medical Research Institute, Kisumu, Kenya, ⁴Drugs for Neglected Diseases initiative, Geneva, Switzerland

Background

recommends fixed-dose artemisin-based combinations therapies (ACTs) to treat > WHO uncomplicated *Plasmodium falciparum* malaria.

 \geq In Africa, there is limited data available on the artesunate-mefloquine (ASMQ) fixed-dose combination (FDC) and no data on MQ pharmacokinetics in children.

Objectives

characterize the population pharmacokinetics (PK) of > To mefloquine following administration of ASMQ FDC in children.

 \geq To test the influence of co-administered drugs as well as of demographic and physiological characteristics on mefloquine PK.

Methods

Study design

813

> A randomized clinical study evaluating the efficacy and safety of artesunate-

Data

 \geq A total of 216 MQ samples were collected from 48 Kenyan children with

mefloquine vs arthemether-lumefantrine combinations is being conducted in children under 5 years of age in Kenya, Tanzania and Burkina Faso.

Days 0, 1 and 2: once-daily administration of one FDC tablet (25mg MQ / 55mg AS) for children aged 6-11 months, or two tablets for children aged 12-59 months.

Analytical methods

phase Plasma drug levels have been determined by reverse liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with an electrospray ionization interface using an adaptation of the multiplex method for the simultaneous analysis of antimalarials developed previously in our laboratory¹. \geq The Laboratory participates in the External Quality Control program for antimalarial drugs organized by the WorldWide Antimalarial Resistance Network (WWARN)² where our Laboratory performs well.

Patients characteristics

Baseline characteristics	Value	% or range	
Demographic characteristics			
Sex (male/female) (no.)	19/29	40/60	
Median age (yr)	2.60	0.55-4.95	
Median body weight (kg)	12.6	6.6-17	
Median height/length (cm)	89.2	66-114	
Physiological characteristics			
Hematocrit (%)	30.9	16.8-49.1	
Hemoglobin (g/dl)	9.5	5.3-15.2	
Co-administered drugs			
CYP3A4 inducers (no.)	7/41	15/85	
CYP3A4 inhibitors	0	0	

Plasmodium falciparum malaria.

Data analysis

 \geq The analysis was performed using the NONMEM[®] (non-linear mixed effect) modelling) program³.

> A two-compartment model with first-order absorption and elimination best describes mefloquine pharmacokinetics.

Estimated parameters (CL), systemic clearance were: intercompartmental clearance (Q), volumes of distribution of the central and peripheral compartment (V_{c} and V_{P}) and absorption rate constant (K_{a}). \geq Interpatient variability (IIV) was associated with CL, V_c and K_a.

Covariates analyses

 \geq Linear models were used to model the effect of demographic and physiological characteristics (centered on their median value) as well as for comedications (coded as 0 or 1) on MQ pharmacokinetics.

> Allometric power model was also tested to model body weight impact on volume of distribution and clearance.

 \geq Treatment day (1 vs. 2 and 3), considered as a marker of health improvement due to the first dose of ASMQ intake, was evaluated for its impact on the absorption rate constant.

1 Hodel EM, Zanolari B, Mercier T, Biollaz J, Keiser J, Olliaro P, Genton B, Decosterd LA. A single LC tandem MS method for the simultaneous determination of 14 antimalarials and metabolites in human plasma. J Chromatog B 877, 867-886 (2009) 2 WorldWide Antimalarial Resistance Network (WWARN) http://www.wwarn.org/toolkit/gagc. 3 Beal, S.L., et al., NONMEM User's Guides (1989-2009), 2009, Icon Development Solutions: Ellicot City, MD, USA.

Results

> The volume of distribution of the central compartment was found to increase significantly with patients body weight.

 \geq Age and treatment day were found to respectively decrease and increase the absorption rate constant.

None of the tested covariates was associated with MQ clearance.

Parameter	P	Populatio	n mean		
	Estimate	RSE(%)	IIV(%)	RSE(%)	$TWc = Vc^* BW/MBW$
CL (L/h)	0.20	7	41	14	allomatric nower func

> High interindividual variability is associated with MQ pharmacokinetics

> Median (range) MQ elimination half-life is estimated to be 12.6 days (9-33) days)

 \geq Visual predictive check of the dose-normalized observed MQ plasma concentration with mean population prediction (solid lines) and 90% confidence intervals (dotted lines):

V_{c} (L)	45.2	6	32	16
K _a (h⁻¹)	0.19	20	95	12
Q (L/h)	0.10	16		
V _P (L)	21.2	9		
$\theta_{AGE,Ka}$	-0.70	21		
θ _{DAY,KA}	0.49	21		

IIV: Interpatient variability; RSE: Relative standard error

allometric power function, BW: patients' body weight; MBW: median population BW $TVK_a = K_a^*(1 + \theta_{AGE,Ka}^* ((AGE-MAGE)/AGE))$ *(1+ $\theta_{\text{Day,Ka}}$ *Q1) with Q1=0 if treatment day = 0, 1 otherwise;

MAGE: median population AGE

> MQ pharmacokinetics present large inter-patient variability in children treated with fixed dose regimen.

> Clearance and volume of distribution of MQ in children is lower than in adult patients of African, Caucasian or Asian origin, but the terminal elimination half-life and mean absorption time are of similar magnitude.

These results will be further analyzed in light of efficacy and tolerance data.